Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Braz. J. Pharm. Sci. (Online) ; 60: e22542, 2024. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1533990

RESUMO

We developed poly-ε-caprolactone (PCL)-based nanoparticles containing D-α-tocopherol polyethylene glycol-1000 succinate (TPGS) or Poloxamer 407 as stabilizers to efficiently encapsulate genistein (GN). Two formulations, referred to as PNTPGS and PNPol, were prepared using nanoprecipitation. They were characterized by size and PDI distribution, zeta potential, nanoparticle tracking analysis (NTA), GN association (AE%), infrared spectroscopy (FT-IR), and differential scanning calorimetry (DSC). PNTPGS-GN exhibited a particle size of 141.2 nm, a PDI of 0.189, a zeta potential of -32.9 mV, and an AE% of 77.95%. PNPol-GN had a size of 146.3 nm, a better PDI than PNTPGS-GN (0.150), a less negative zeta potential (-21.0 mV), and an AE% of 68.73%. Thermal and spectrometric analyses indicated that no new compounds were formed, and there was no incompatibility detected in the formulations. Cellular studies revealed that Poloxamer 407 conferred less toxicity to PCL nanoparticles. However, the percentage of uptake decreased compared to the use of TPGS, which exhibited almost 80% cellular uptake. This study contributes to the investigation of stabilizers capable of conferring stability to PCL nanoparticles efficiently encapsulating GN. Thus, the PCL nanoparticle proposed here is an innovative nanomedicine for melanoma therapy and represents a strong candidate for specific pre-clinical and in vivo studie


Assuntos
Genisteína/farmacologia , Nanopartículas/análise , Melanoma/tratamento farmacológico , Tamanho da Partícula , Análise Espectral/classificação , Varredura Diferencial de Calorimetria/métodos , Cromatografia Líquida de Alta Pressão/métodos
2.
J AOAC Int ; 106(6): 1438-1442, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37672013

RESUMO

BACKGROUND: Hypericin (HYP) is a natural compound widely used as a food supplement. The encapsulation of HYP into nanosystems, such as nanostructured lipid carriers (NLC), is a promising strategy for delivering this lipophilic molecule and protecting it from degradation. OBJECTIVE: This study aims to develop and validate an analytical method to quantify the encapsulation efficiency of HYP in NLC. METHOD: A reverse-phase high-performance liquid chromatography (HPLC) method was developed and validated according to the International Conference on Harmonization (ICH) guide Q2 (R1). NLC was prepared through the ultrasonication method, and HYP encapsulation efficiency was evaluated using the validated method. RESULTS: Separation was achieved using an isocratic mobile phase composed of acetonitrile, methanol, and ammonium acetate buffer (10 mM, pH 5.0) (54:36:10, v/v/v) and a reverse stationary phase. The specificity, linearity, precision, accuracy, and robustness of the method were assessed and confirmed during the validation. Furthermore, the validated method was able to determine the encapsulation efficiency of HYP in NLC. CONCLUSIONS: The HPLC method was validated, and the results indicated the ability of NLC to deliver HYP compounds for further application as a food supplement. HIGHLIGHTS: HYP is used as a food supplement and for photodynamic therapy (PDT). The developed method was specific, linear, precise, accurate, and robust. NLCs showed a high ability to encapsulate HYP.


Assuntos
Nanoestruturas , Limite de Detecção , Nanoestruturas/química , Cromatografia Líquida de Alta Pressão/métodos , Lipídeos
3.
Photodiagnosis Photodyn Ther ; 44: 103739, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37582452

RESUMO

Oral cancer is one of the most prevalent types of cancer head and neck cancers worldwide. Photodynamic therapy (PDT) has demonstrated great potential against cancers, reducing long-term morbidity. In this study, we investigated the incorporation of methylene blue (MB) in a mucoadhesive liquid crystal precursor system (LCPS) for oral cancer treatment. The photostability and the in vitro release, permeation, and retention profile of MB-loaded LCPS (MB-LCPS) were investigated, as well as its in vitro PDT activity against normal (HaCaT) and tumoral (HSC-3) cell lines. LCPS increased the photostability of MB and exhibited a prolonged release profile of MB. In addition, LCPS increased the retention of MB in the porcine esophageal mucosa by around 3 times higher than the MB solution. The retention of MB in LCPS was around 2 times greater than its permeability, which is suitable for guaranteeing the maintenance of the therapy in the oral cavity. In vitro cytotoxicity assay indicated that MB-LCPS increased the antitumoral activity of MB after 20 min of irradiation at 660 nm and 12.5 J/cm2. The results obtained suggest that the developed formulation is an interesting strategy for the potential application in the treatment of oral cancer by PDT.


Assuntos
Cristais Líquidos , Neoplasias Bucais , Fotoquimioterapia , Animais , Suínos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Azul de Metileno , Neoplasias Bucais/tratamento farmacológico
4.
Mater Today Bio ; 20: 100671, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37273792

RESUMO

Gliomas are the most common type of brain cancer, and among them, glioblastoma multiforme (GBM) is the most prevalent (about 60% of cases) and the most aggressive type of primary brain tumor. The treatment of GBM is a major challenge due to the pathophysiological characteristics of the disease, such as the presence of the blood-brain barrier (BBB), which prevents and regulates the passage of substances from the bloodstream to the brain parenchyma, making many of the chemotherapeutics currently available not able to reach the brain in therapeutic concentrations, accumulating in non-target organs, and causing considerable adverse effects for the patient. In this scenario, nanocarriers emerge as tools capable of improving the brain bioavailability of chemotherapeutics, in addition to improving their biodistribution and enhancing their uptake in GBM cells. This is possible due to its nanometric size and surface modification strategies, which can actively target nanocarriers to elements overexpressed by GBM cells (such as transmembrane receptors) related to aggressive development, drug resistance, and poor prognosis. In this review, an overview of the most frequently overexpressed receptors in GBM cells and possible approaches to chemotherapeutic delivery and active targeting using nanocarriers will be presented.

5.
Nanomedicine (Lond) ; 18(10): 789-801, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37199266

RESUMO

Aims: The development of rapamycin (RAP) and resveratrol (RSV) coloaded liposomes (RAP-RSV-LIP) for breast cancer therapy. Materials & methods: Liposomes were prepared using a high-pressure homogenization technique and evaluated according to their physicochemical characteristics, cellular uptake and cytotoxicity against tumoral and normal cells. Results & conclusion: The RAP-RSV-LIP showed negative surface charge, size around 100 nm, low polydispersity and high encapsulation efficiency for RAP and RSV (58.87 and 63.22%, respectively). RAP-RSV-LIP showed great stability over 60 days and a prolonged drug-release profile. In vitro studies indicated that RAP-RSV-LIP were internalized in an estrogen receptor-positive human breast cancer cell line (MCF-7, 34.2%) and improved cytotoxicity when compared with free drugs. Therefore RAP-RSV-LIP showed great antitumoral potential against breast cancer cells.


Assuntos
Neoplasias da Mama , Lipossomos , Humanos , Feminino , Resveratrol/farmacologia , Lipossomos/uso terapêutico , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Antioxidantes/uso terapêutico , Linhagem Celular Tumoral
6.
Nanomedicine (Lond) ; 18(7): 633-647, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37183804

RESUMO

Nanomedicines have been investigated for delivering drugs to tumors due to their ability to accumulate in the tumor tissues. 2D in vitro cell culture has been used to investigate the antitumoral potential of nanomedicines. However, a 2D model cannot adequately mimic the in vivo tissue conditions because of the lack of cell-cell interaction, a gradient of nutrients and the expression of genes. To overcome this limitation, 3D cell culture models have emerged as promising platforms that better replicate the complexity of native tumors. For this purpose, different techniques can be used to produce 3D models, including scaffold-free, scaffold-based and microfluidic-based models. This review addresses the principles, advantages and limitations of these culture methods for evaluating the antitumoral efficacy of nanomedicines.


Assuntos
Neoplasias , Esferoides Celulares , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Técnicas de Cultura de Células/métodos , Microfluídica
7.
Colloids Surf B Biointerfaces ; 226: 113309, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37054466

RESUMO

Glioblastoma multiforme is the most common and most aggressive human brain cancer. GBM treatment is still a challenge because many drugs are not able to cross the blood-brain barrier, in addition to the increasing resistance to currently available chemotherapy. New therapeutic alternatives are emerging, and, in this context, we highlight kaempferol, a flavonoid with remarkable anti-tumor activity but with limited bioavailability due to its strong lipophilic property. A promising tool to improve the biopharmaceutical properties of molecules such as kaempferol is the use of drug-delivery nanosystems, such as nanostructured lipid carriers (NLC), which can facilitate the dispersion and delivery of highly lipophilic molecules. The present work aimed at the development and characterization of kaempferol-loaded NLC (K-NLC) and the evaluation of its biological properties using in vitro models. The K-NLC showed an average size of 120 nm, zeta potential of - 21 mV, and polydispersity index of 0.099. The K-NLC presented high kaempferol encapsulation efficiency (93%), a drug loading of 3.58%, and a sustained kaempferol release profile for up to 48 h. In addition to presenting a 7-fold increase in kaempferol cytotoxicity, its encapsulation in NLC promoted a cellular uptake of 75%, which corroborates with increased cytotoxicity in U-87MG cells, as observed. Together, these data reinforce the promising antineoplastic properties of kaempferol in addition to the key role of NLC as a platform for the efficient delivery of lipophilic drugs to neoplastic cells, which improved their uptake and therapeutic efficacy in glioblastoma multiforme cells.


Assuntos
Glioblastoma , Nanoestruturas , Humanos , Lipídeos , Glioblastoma/tratamento farmacológico , Quempferóis/farmacologia , Portadores de Fármacos , Tamanho da Partícula
8.
Pharmaceutics ; 15(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36986612

RESUMO

Cancer is one of the major public health problems worldwide. Despite the advances in cancer therapy, it remains a challenge due to the low specificity of treatment and the development of multidrug resistance mechanisms. To overcome these drawbacks, several drug delivery nanosystems have been investigated, among them, magnetic nanoparticles (MNP), especially superparamagnetic iron oxide nanoparticles (SPION), which have been applied for treating cancer. MNPs have the ability to be guided to the tumor microenvironment through an external applied magnetic field. Furthermore, in the presence of an alternating magnetic field (AMF) this nanocarrier can transform electromagnetic energy in heat (above 42 °C) through Néel and Brown relaxation, which makes it applicable for hyperthermia treatment. However, the low chemical and physical stability of MNPs makes their coating necessary. Thus, lipid-based nanoparticles, especially liposomes, have been used to encapsulate MNPs to improve their stability and enable their use as a cancer treatment. This review addresses the main features that make MNPs applicable for treating cancer and the most recent research in the nanomedicine field using hybrid magnetic lipid-based nanoparticles for this purpose.

9.
Pharmaceutics ; 15(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36986624

RESUMO

Dental caries is the most common oral disease, with high prevalence rates in adolescents and low-income and lower-middle-income countries. This disease originates from acid production by bacteria, leading to demineralization of the dental enamel and the formation of cavities. The treatment of caries remains a global challenge and the development of effective drug delivery systems is a potential strategy. In this context, different drug delivery systems have been investigated to remove oral biofilms and remineralize dental enamel. For a successful application of these systems, it is necessary that they remain adhered to the surfaces of the teeth to allow enough time for the removal of biofilms and enamel remineralization, thus, the use of mucoadhesive systems is highly encouraged. Among the systems used for this purpose, liquid crystalline systems, polymer-based nanoparticles, lipid-based nanoparticles, and inorganic nanoparticles have demonstrated great potential for preventing and treating dental caries through their own antimicrobial and remineralization properties or through delivering drugs. Therefore, the present review addresses the main drug delivery systems investigated in the treatment and prevention of dental caries.

10.
Photodiagnosis Photodyn Ther ; 41: 103285, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36639007

RESUMO

BACKGROUND: Streptococcus mutans and Candida albicans can colonize the teeth, the oral cavity as biofilm and can cause oral infections. Thus, strategies to prevent and control oral biofilms are requested. The present study aims the development and characterization of methylene blue (MB)-loaded polymeric micelles for antimicrobial photodynamic therapy (aPDT) against Streptococcus mutans and Candida albicans biofilms METHODS: MB-loaded polymeric micelles were produced and characterized by particle size, polydispersity index, morphology, zeta potential, stability, MB release profile, and antimicrobial effect against S. mutans and C. albicans biofilms. RESULTS: MB-loaded polymeric micelles showed a reduced particle size, moderate polydisperse profile, spherical and neutral shape, which demonstrated to be promising features to allow micelles penetration into biofilms. Antimicrobial effect against bacterial and yeast biofilms was demonstrated once MB was irradiated by light under 660 nm (aPDT). Furthermore, MB-loaded polymeric micelles showed significant inhibition of S. mutans and C. albicans biofilms. Furthermore, the treatment with MB-micelles incubated with high pre-incubation times (15 and 30 min) were more effective than 5 min. It can be explained by the time required for this nanosystem to penetrate the innermost layer of biofilms and release MB for aPDT. CONCLUSION: MB-loaded polymeric micelles can effectively decrease the bacteria and yeast viability and it may cause positive impacts in the clinical practice. Thus, the developed formulation showed potential in the treatment to remove oral biofilms, but clinical studies are needed to confirm its potential.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Fotoquimioterapia/métodos , Candida albicans , Fármacos Fotossensibilizantes/farmacologia , Streptococcus mutans , Azul de Metileno/farmacologia , Micelas , Anti-Infecciosos/farmacologia , Polímeros/farmacologia , Biofilmes
11.
Crit Rev Anal Chem ; 53(5): 1080-1093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34818953

RESUMO

Epirubicin (EPI) is a chemotherapeutic agent belonging to the anthracycline drug class indicated for treating several tumors. It acts by suppressing the DNA and RNA synthesis by intercalating between their base pair. However, several side effects are associated with this therapy, including cardiotoxicity and myelosuppression. Therefore, EPI delivery in nanosystems has been an interesting strategy to overcome these limitations and improve the safety and efficacy of EPI. Thus, analytical methods have been used to understand and characterize these nanosystems, including spectrophotometric, spectrofluorimetric, and chromatography. Spectrophotometric and spectrofluorimetric methods have been used to quantify EPI in less complex matrices due to their efficiency, low cost, and green chemistry character. By contrast, high-performance liquid chromatography is a suitable method for detecting EPI in more complex matrices (e.g., plasm and urine) owing to its high sensitivity. This review summarizes physicochemical and pharmacokinetic properties of EPI, its application in drug delivery nanosystems, and the analytical methods employed in its quantification in different matrices, including blood, plasm, urine, and drug delivery nanosystems.


Assuntos
Nanopartículas , Epirubicina/farmacocinética , Epirubicina/uso terapêutico , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapêutico
12.
Pharmaceutics ; 14(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36145723

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. Curcumin-loaded mesoporous silica nanoparticles (MSN-CCM) can overcome the drawbacks related to the free curcumin (CCM) clinical application, such as water insolubility and low bioavailability, besides acting over the main causes associated to AD. A thermo-responsive hydrogel is an interesting approach for facilitating the administration of the nanosystem via a nasal route, as well as for overcoming mucociliary clearance mechanisms. In light of this, MSN-CCM were dispersed in the hydrogel and evaluated through in vitro and in vivo assays. The MSNs and MSN-CCM were successfully characterized by physicochemical analysis and a high value of the CCM encapsulation efficiency (EE%, 87.70 ± 0.05) was achieved. The designed thermo-responsive hydrogel (HG) was characterized by rheology, texture profile analysis, and ex vivo mucoadhesion, showing excellent mechanical and mucoadhesive properties. Ex vivo permeation studies of MSN-CCM and HG@MSN-CCM showed high permeation values (12.46 ± 1.08 and 28.40 ± 1.88 µg cm-2 of CCM, respectively) in porcine nasal mucosa. In vivo studies performed in a streptozotocin-induced AD model confirmed that HG@MSN-CCM reverted the cognitive deficit in mice, acting as a potential formulation in the treatment of AD.

13.
Curr Pharm Des ; 28(25): 2073-2088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35658888

RESUMO

Temozolomide (TMZ) is an imidazotetrazine prodrug used to treat glioblastoma multiforme. Its physicochemical properties and small size confer the ability to cross the blood-brain barrier. The antitumor activity depends on pH-dependent hydrolysis of the methyldiazonium cation, which is capable of methylating purine bases (O6-guanine; N7-guanine, and N3-adenine) and causing DNA damage and cell death. TMZ is more stable in acidic media (pH ≤ 5.0) than in basic media (pH ≥ 7.0) due to the protonated form that minimizes the catalytic process. Due to this, TMZ has high oral bioavailability, but it has a half-life of 1.8 h and low brain distribution (17.8%), requiring a repeated dosing regimen that limits its efficacy and increases adverse events. Drug delivery Nanosystems (DDNs) improve the physicochemical properties of TMZ and may provide controlled and targeted delivery. Therefore, DDNs can increase the efficacy and safety of TMZ. In this context, to ensure the efficiency of DDNs, analytical methods are used to evaluate TMZ pharmacokinetic parameters, encapsulation efficiency, and the release profile of DDNs. Among the methods, high-performance liquid chromatography is the most used due to its detection sensitivity in complex matrices such as tissues and plasma. Micellar electrokinetic chromatography features fast analysis and no sample pretreatment. Spectrophotometric methods are still used to determine encapsulation efficiency due to their low cost, despite their low sensitivity. This review summarizes the physicochemical and pharmacological properties of free TMZ and TMZ-loaded DDNs. In addition, this review addresses the main analytical methods employed to characterize TMZ in different matrices.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Guanina/uso terapêutico , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico
14.
Pharmaceutics ; 14(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456655

RESUMO

Cancer is the second most frequent cause of death worldwide, with 28.4 million new cases expected for 2040. Despite de advances in the treatment, it remains a challenge because of the tumor heterogenicity and the increase in multidrug resistance mechanisms. Thus, gene therapy has been a potential therapeutic approach owing to its ability to introduce, silence, or change the content of the human genetic code for inhibiting tumor progression, angiogenesis, and metastasis. For the proper delivery of genes to tumor cells, it requires the use of gene vectors for protecting the therapeutic gene and transporting it into cells. Among these vectors, liposomes have been the nonviral vector most used because of their low immunogenicity and low toxicity. Furthermore, this nanosystem can have its surface modified with ligands (e.g., antibodies, peptides, aptamers, folic acid, carbohydrates, and others) that can be recognized with high specificity and affinity by receptor overexpressed in tumor cells, increasing the selective delivery of genes to tumors. In this context, the present review address and discuss the main targeting ligands used to functionalize liposomes for improving gene delivery with potential application in cancer treatment.

15.
Int J Pharm ; 604: 120758, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34090991

RESUMO

Glioma is the most common type of Central Nervous System (CNS) neoplasia and it arises from glial cells. As glial cells are formed by different types of cells, glioma can be classified according to the cells that originate it or the malignancy grade. Glioblastoma multiforme is the most common and aggressive glioma. The high lethality of this tumor is related to the difficulty in performing surgical removal, chemotherapy, and radiotherapy in the CNS. To improve glioma treatment, a wide range of chemotherapeutics have been encapsulated in nanosystems to increase their ability to overcome the blood-brain barrier (BBB) and specifically reach the tumoral cells, reducing side effects and improving drug concentration in the tumor microenvironment. Several studies have investigated nanosystems covered with targeting ligands (e.g., proteins, peptides, aptamers, folate, and glucose) to increase the ability of drugs to cross the BBB and enhance their specificity to glioma through specific recognition by receptors on BBB and glioma cells. This review addresses the main targeting ligands used in nanosystems to overcome the BBB and promote the active targeting of drugs for glioma. Furthermore, the advantages of using these molecules in glioma treatment are discussed.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Nanopartículas , Barreira Hematoencefálica , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Glioma/tratamento farmacológico , Humanos , Microambiente Tumoral
16.
Mater Sci Eng C Mater Biol Appl ; 124: 112033, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33947535

RESUMO

Glioblastoma multiforme (GBM) is a first primary Central Nervous System tumor with high incidence and lethality. Its treatment is hampered by the difficulty to overcome the blood-brain barrier (BBB) and by the non-specificity of chemotherapeutics to tumor cells. This study was based on the development characterization and in vitro efficacy of folate-modified TPGS transfersomes containing docetaxel (TF-DTX-FA) to improve GBM treatment. TF-DTX-FA and unmodified transfersomes (TF-DTX) were prepared through thin-film hydration followed by extrusion technique and characterized by physicochemical and in vitro studies. All formulations showed low particles sizes (below 200 nm), polydispersity index below 0.2, negative zeta potential (between -16.75 to -12.45 mV) and high encapsulation efficiency (78.72 ± 1.29% and 75.62 ± 0.05% for TF-DTX and TF-DTX-FA, respectively). Furthermore, cytotoxicity assay of TF-DTX-FA showed the high capacity of the nanocarriers to reduce the viability of U-87 MG in both 2D and 3D culture models, when compared with DTX commercial formulation and TF-DTX. In vitro cellular uptake assay indicated the selectivity of transfersomes to tumoral cells when compared to normal cells, and the higher ability of TF-DTX-FA to be internalized into 2D U-87 MG in comparison with TF-DTX (72.10 and 62.90%, respectively, after 24 h). Moreover, TF-DTX-FA showed higher permeability into 3D U-87 MG spheroid than TF-DTX, suggesting the potential FA modulation to target treatment of GBM.


Assuntos
Antineoplásicos , Glioblastoma , Nanopartículas , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Docetaxel/farmacologia , Portadores de Fármacos , Ácido Fólico , Glioblastoma/tratamento farmacológico , Humanos , Vitamina E
17.
J Pharm Sci ; 110(7): 2629-2636, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33848527

RESUMO

In vitro 3D culture models have emerged in the cancer field due to their ability to recapitulate characteristics of the in vivo tumor. Herein, we described the establishment and characterization of 3D multicellular spheroids using ovarian cancer cells (SKOV-3) in co-culture with mesenchymal cells (MUC-9) or fibroblasts (CCD27-Sk). We demonstrated that SKOV-3 cells in co-culture were able to form regular and compact spheroids with diameters ranging from 300 to 400 µm and with a roundness close to 1.0 regardless of the type of stromal cell used. In the 3D culture an increase was not observed in spheroid diameter nor was there significant cell growth. What is more, the 3D co-cultures presented an up regulation of genes related to tumorigenesis, angiogenesis and metastases (MMP2, VEGFA, SNAI1, ZEB1 and VIM) when compared with 2D and 3D monoculture. As expected, both 3D cultures (mono and co-cultures) exhibited a higher Paclitaxel chemoresistance when compared to 2D condition. Although we did not observe differences in the Paclitaxel resistance between the 3D mono and co-cultures, the gene expression results indicate that the presence of mesenchymal cells and fibroblasts better recapitulate the in vivo tumor microenvironment, being able, therefore, to more accurately evaluate drug efficacy for ovarian cancer therapy.


Assuntos
Detecção Precoce de Câncer , Neoplasias Ovarianas , Linhagem Celular Tumoral , Técnicas de Cocultura , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Esferoides Celulares , Microambiente Tumoral
18.
Curr Gene Ther ; 21(5): 452-463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390137

RESUMO

Gliomas are primary brain tumors originating from glial cells, representing 30% of all Central Nervous System (CNS) neoplasia. Among them, the astrocytoma grade IV (glioblastoma multiforme) is the most common, presenting an invasive and aggressive profile, with an estimated life expectancy of about 15 months after diagnosis even after treatment with radiation, surgical resection, and chemotherapy. This poor prognosis is related to the presence of the blood-brain barrier (BBB) and multidrug resistance mechanisms that prevent the uptake and retention of chemotherapeutics inside the brain. Gene therapy has been a promising strategy to overcome these treatment limitations since it has the ability to modify the defective genetic information in tumor cells, being able to induce cellular apoptosis and silence the genes responsible for multidrug resistance. Lipidbased nanoparticles, non-viral vectors, have been investigated to deliver genes across the BBB to reach the glioma cell target. Besides, their low immunogenicity, easy production, ability to incorporate ligands to specific target cells, and capacity to carry higher size genes have made the gene therapy based on non-viral vectors a promising glioma treatment. In this context, this review addresses the most common non-viral vectors based on lipid-based nanoparticles used for glioma gene therapy, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and nanoemulsions.


Assuntos
Glioblastoma , Glioma , Nanopartículas , Barreira Hematoencefálica , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Terapia Genética , Glioma/tratamento farmacológico , Glioma/terapia , Humanos , Lipossomos
19.
Curr Neuropharmacol ; 19(6): 787-812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32867643

RESUMO

Glioblastoma multiforme (GBM) is the most common primary malignant Central Nervous System cancer, responsible for about 4% of all deaths associated with neoplasia, characterized as one of the fatal human cancers. Tumor resection does not possess curative character, thereby radio and/or chemotherapy are often necessary for the treatment of GBM. However, drugs used in GBM chemotherapy present some limitations, such as side effects associated with non-specific drug biodistribution as well as limited bioavailability, which limits their clinical use. To attenuate the systemic toxicity and overcome the poor bioavailability, a very attractive approach is drug encapsulation in drug delivery nanosystems. The main focus of this review is to explore the actual cancer global problem, enunciate barriers to overcome in the pharmacological treatment of GBM, as well as the most updated drug delivery nanosystems for GBM treatment and how they influence biopharmaceutical properties of anti-GBM drugs. The discussion will approach lipid-based and polymeric nanosystems, as well as inorganic nanoparticles, regarding their technical aspects as well as biological effects in GBM treatment. Furthermore, the current state of the art, challenges to overcome and future perspectives in GBM treatment will be discussed.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Preparações Farmacêuticas , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Humanos , Distribuição Tecidual
20.
Mater Sci Eng C Mater Biol Appl ; 105: 110038, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546359

RESUMO

Ovarian cancer is the most lethal gynecological cancer of female reproductive system. In order to improve the survival rate, some modifications on nanoparticles surfaces have been investigated to promote active targeting of drugs into tumor microenvironment. The aim of this study was the development and characterization of folate-modified (PN-PCX-FA) and unmodified PLGA nanoparticles (PN-PCX) containing paclitaxel for ovarian cancer treatment. Nanocarriers were produced using nanoprecipitation technique and characterized by mean particle diameter (MPD), polydispersity index (PDI), zeta potential (ZP), encapsulation efficiency (EE), DSC, FTIR, in vitro cytotoxicity and cellular uptake. PN-PCX and PN-PCX-FA showed MPD < 150 nm and PDI < 0.2 with high EE (about 90%). Cytotoxicity assays in SKOV-3 cells demonstrated the ability of both formulations to cause cellular damage. PCX encapsulated in PN-PCX-FA at 1 nM showed higher cytotoxicity than PN-PCX. Folate-modified nanoparticles showed a 3.6-fold higher cellular uptake than unmodified nanoparticles. PN-PCX-FA is a promising system to improve safety and efficacy of ovarian cancer treatment. Further in vivo studies are necessary to prove PN-PCX-FA potential.


Assuntos
Ácido Fólico/química , Nanopartículas/química , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Compostos de Boro/síntese química , Compostos de Boro/química , Varredura Diferencial de Calorimetria , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Endocitose/efeitos dos fármacos , Feminino , Humanos , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA