Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399052

RESUMO

Nowadays, lithium-ion batteries are undoubtedly known as the most promising rechargeable batteries. However, these batteries face some big challenges, like not having enough energy and not lasting long enough, that should be addressed. Ternary Ni-rich Li[NixCoyMnz]O2 and Li[NixCoyAlz]O2 cathode materials stand as the ideal candidate for a cathode active material to achieve high capacity and energy density, low manufacturing cost, and high operating voltage. However, capacity gain from Ni enrichment is nullified by the concurrent fast capacity fading because of issues such as gas evolution, microcracks propagation and pulverization, phase transition, electrolyte decomposition, cation mixing, and dissolution of transition metals at high operating voltage, which hinders their commercialization. In order to tackle these problems, researchers conducted many strategies, including elemental doping, surface coating, and particle engineering. This review paper mainly talks about origins of problems and their mechanisms leading to electrochemical performance deterioration for Ni-rich cathode materials and modification approaches to address the problems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA