Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 259(4): 917-935, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34595603

RESUMO

The growing zone (GZ) of the unicellular coenocytic sporangiophore of Phycomyces blakesleeanus represents the site of stimulus reception (light, gravity, gas) and stimulus response, i.e., local modulations of the elongation growth, which may result, in dependence of the stimulus direction, in tropic bending. Until now, evidence for a possible participation of the columella in sensory reception is absent. We confirm with light microscopy earlier studies that show that the GZ and the columella are not separated by a membrane or cell wall, but rather form a spatial continuum that allows free exchange of cytoplasm and organelle transport. Evidence is presented that the columella is responsive to external stimuli. Columellae, from which spores and sporangial cell wall had been removed, respond to exogenous auxin with a local depolarization of the membrane potential and an increased growth rate of the GZ. In contrast, auxin applied to the GZ causes a decrease of the growth rate irrespective of the presence or absence of sporangia. The response pattern is specific and relevant for the sensory reception of Phycomyces, because the light-insensitive mutant C148carAmadC, which lacks the RAS-GAP protein MADC, displays abnormal IAA sensitivity and membrane depolarization. We argue that the traditional concept of the GZ as the only stimulus-sensitive zone should be abandoned in favor of a model in which GZ and columella operate as a single entity capable to orchestrate a multitude of stimulus inputs, including auxin, to modulate the membrane potential and elongation growth of the GZ.


Assuntos
Phycomyces , Gravitropismo/fisiologia , Ácidos Indolacéticos , Luz , Potenciais da Membrana , Organelas , Transdução de Sinais
2.
Chemosphere ; 260: 127553, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32653748

RESUMO

The impact of ionizing radiation on microorganisms such as microalgae is a topic of increasing importance for understanding the dynamics of aquatic ecosystems in response to environmental radiation, and for the development of efficient approaches for bioremediation of mining and nuclear power plants wastewaters. Currently, nothing is known about the effects of ionizing radiation on the microalgal cell wall, which represents the first line of defence against chemical and physical environmental stresses. Using various microscopy, spectroscopy and biochemical techniques we show that the unicellular alga Chlorella sorokiniana elicits a fast response to ionizing radiation. Within one day after irradiation with doses of 1-5 Gy, the fibrilar layer of the cell wall became thicker, the fraction of uronic acids was higher, and the capacity to remove the main reactive product of water radiolysis increased. In addition, the isolated cell wall fraction showed significant binding capacity for Cu2+, Mn2+, and Cr3+. The irradiation further increased the binding capacity for Cu2+, which appears to be mainly bound to glucosamine moieties within a chitosan-like polymer in the outer rigid layer of the wall. These results imply that the cell wall represents a dynamic structure that is involved in the protective response of microalgae to ionizing radiation. It appears that microalgae may exhibit a significant control of metal mobility in aquatic ecosystems via biosorption by the cell wall matrix.


Assuntos
Chlorella/metabolismo , Metais/metabolismo , Antioxidantes/metabolismo , Biodegradação Ambiental , Biomassa , Parede Celular/metabolismo , Chlorella/efeitos dos fármacos , Ecossistema , Microalgas/metabolismo , Radiação Ionizante , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA