Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39094989

RESUMO

Aspirin (Acetylsalicylic acid, ASA), one of the widely used non-steroid anti-inflammatory drugs can easily end up in sewage effluents and thus it becomes necessary to investigate the effects of aspirin on behaviour of aquatic organisms. Previous studies in mammals have shown ASA to alter fear and anxiety-like behaviours. In the great pond snail Lymnaea stagnalis, ASA has been shown to block a 'sickness state' induced by lipopolysaccharide injection which upregulates immune and stress-related genes thus altering behavioural responses. In Lymnaea, eliciting physiological stress may enhance memory formation or block its retrieval depending on the stimulus type and intensity. Here we examine whether ASA will alter two forms of associative-learning memory in crayfish predator-experienced Lymnaea when ASA exposure accompanies predator-cue-induced stress during the learning procedure. The two trainings procedures are: 1) operant conditioning of aerial respiration; and 2) a higher form of learning, called configural learning, which here is dependent on evoking a fear response. We show here that ASA alone does not alter homeostatic aerial respiration, feeding behaviour or long-term memory (LTM) formation of operantly conditioned aerial respiration. However, ASA blocked the enhancement of LTM formation normally elicited by training snails in predator cue. ASA also blocked configural learning, which makes use of the fear response elicited by the predator cue. Thus, ASA alters how Lymnaea responds cognitively to predator detection.


Assuntos
Aspirina , Comportamento Animal , Medo , Lymnaea , Animais , Aspirina/farmacologia , Medo/efeitos dos fármacos , Lymnaea/fisiologia , Lymnaea/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Memória de Longo Prazo/efeitos dos fármacos , Astacoidea/efeitos dos fármacos , Astacoidea/fisiologia
2.
J Neurosci Res ; 102(8): e25371, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39078068

RESUMO

Carnosine is a naturally occurring endogenous dipeptide with well-recognized anti-inflammatory, antioxidant, and neuroprotective effects at the central nervous system level. To date, very few studies have been focused on the ability of carnosine to rescue and/or enhance memory. Here, we used a well-known invertebrate model system, the pond snail Lymnaea stagnalis, and a well-studied associative learning procedure, operant conditioning of aerial respiration, to investigate the ability of carnosine to enhance long-term memory (LTM) formation and reverse memory obstruction caused by an immune challenge (i.e., lipopolysaccharide [LPS] injection). Exposing snails to 1 mM carnosine for 1 h before training in addition to enhancing memory formation resulted in a significant upregulation of the expression levels of key neuroplasticity genes (i.e., glutamate ionotropic receptor N-methyl-d-aspartate [NMDA]-type subunit 1-LymGRIN1, and the transcription factor cAMP-response element-binding protein 1-LymCREB1) in snails' central ring ganglia. Moreover, pre-exposure to 1 mM carnosine before an LPS injection reversed the memory deficit brought about by inflammation, by preventing the upregulation of key targets for immune and stress response (i.e., Toll-like receptor 4-LymTLR4, molluscan defense molecule-LymMDM, heat shock protein 70-LymHSP70). Our data are thus consistent with the hypothesis that carnosine can have positive benefits on cognitive ability and be able to reverse memory aversive states induced by neuroinflammation.


Assuntos
Carnosina , Lipopolissacarídeos , Lymnaea , Memória de Longo Prazo , Animais , Lymnaea/efeitos dos fármacos , Carnosina/farmacologia , Memória de Longo Prazo/efeitos dos fármacos , Memória de Longo Prazo/fisiologia , Lipopolissacarídeos/farmacologia , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Condicionamento Operante/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38995810

RESUMO

 There has been a significant increase in the incidence of multiple neurodegenerative and terminal diseases in the human population with life expectancy increasing in the current times. This highlights the urgent need for a more comprehensive understanding of how different aspects of lifestyle, in particular diet, may affect neural functioning and consequently cognitive performance as well as in enhancing overall health. Flavonoids, found in a variety of fruits, vegetables, and derived beverages, provide a new avenue of research that shows a promising influence on different aspects of brain function. However, despite the promising evidence, most bioactive compounds lack strong clinical research efficacy. In the current scoping review, we highlight the effects of Flavonoids on cognition and neural plasticity across vertebrates and invertebrates with special emphasis on the studies conducted in the pond snail, Lymnaea stagnalis, which has emerged to be a functionally dynamic model for studies on learning and memory. In conclusion, we suggest future research directions and discuss the social, cultural, and ethnic dependencies of bioactive compounds that influence how these compounds are used and accepted globally. Bridging the gap between preclinical and clinical studies about the effects of bioactive natural compounds on brain health will surely lead to lifestyle choices such as dietary Flavonoids being used complementarily rather than as replacements to classical drugs bringing about a healthier future.

4.
Behav Brain Res ; 472: 115148, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39004230

RESUMO

Fluoride (F-) exposure in organisms remains a significant concern due to its widespread presence and potential health implications. Investigating its detection and subsequent effects on behaviour in aquatic organisms like Lymnaea stagnalis provides valuable insights. Our study focused on elucidating the sensory pathways involved in F- detection and its impact on feeding and memory formation. We explored two potential detection mechanisms: direct flow across the integument onto neurons; and sensory input to the central nervous system (CNS) via the osphradium-osphradial ganglion-osphradial nerve pathway (snails use this system for olfactory sensation of multiple compounds). Injection of F- into snails did not alter feeding behaviour or central neuronal activity, suggesting that internalization might not be the primary detection mode. In contrast, severing the osphradial nerve abolished F-'s suppressive effects on feeding and memory formation, implicating the osphradial pathway in F- sensing and behavioural changes. This finding supports the idea that osphradial nerve signaling mediates the behavioural effects of F-. Our study underscores the importance of sensory pathways in F- detection and behavioural modulation in L. stagnalis. Understanding these mechanisms could provide critical insights into how organisms respond to and adapt to environmental chemical stressors like F-.


Assuntos
Comportamento Alimentar , Fluoretos , Lymnaea , Memória , Animais , Lymnaea/fisiologia , Lymnaea/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Memória/efeitos dos fármacos , Memória/fisiologia , Fluoretos/farmacologia , Olfato/fisiologia , Olfato/efeitos dos fármacos , Fenótipo
5.
J Neurochem ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38922726

RESUMO

The endocannabinoid system (ECS) plays an important role in neuroprotection, neuroplasticity, energy balance, modulation of stress, and inflammatory responses, acting as a critical link between the brain and the body's peripheral regions, while also offering promising potential for novel therapeutic strategies. Unfortunately, in humans, pharmacological inhibitors of different ECS enzymes have led to mixed results in both preclinical and clinical studies. As the ECS has been highly conserved throughout the eukaryotic lineage, the use of invertebrate model organisms like the pond snail Lymnaea stagnalis may provide a flexible tool to unravel unexplored functions of the ECS at the cellular, synaptic, and behavioral levels. In this study, starting from the available genome and transcriptome of L. stagnalis, we first identified putative transcripts of all ECS enzymes containing an open reading frame. Each predicted protein possessed a high degree of sequence conservation to known orthologues of other invertebrate and vertebrate organisms. Sequences were confirmed by qualitative PCR and sequencing. Then, we investigated the transcriptional effects induced by different stress conditions (i.e., bacterial LPS injection, predator scent, food deprivation, and acute heat shock) on the expression levels of the enzymes of the ECS in Lymnaea's central ring ganglia. Our results suggest that in Lymnaea as in rodents, the ECS is involved in mediating inflammatory and anxiety-like responses, promoting energy balance, and responding to acute stressors. To our knowledge, this study offers the most comprehensive analysis so far of the ECS in an invertebrate model organism.

6.
Biology (Basel) ; 13(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38785818

RESUMO

To test the hypothesis that a sleep-like quiescent state enhances memory consolidation in the pond snail Lymnaea stagnalis, we interposed a period in which snails experienced either a quiescent, sleeping state or an active, non-sleeping state following escape behavior suppression learning (EBSL). During EBSL training, the number of escapes made by a snail from a container was significantly suppressed using an external aversive stimulus (punishment). After training, the snails were divided into two groups. One group of snails was allowed to move freely and to experience a sleep-like quiescent state for 3 h in distilled water. The other group was stimulated with a sucrose solution every 10 min to keep them active (i.e., non-sleeping). In the memory test, escape behavior was suppressed in the group that experienced the quiescent state, whereas the suppression was not observed in snails that were kept active. Additionally, the latency of the first escape in the memory test was shorter in the snails kept active than in those that experienced the quiescent state. Together, these data are consistent with the hypothesis that a sleep-like quiescent state enhances EBSL memory consolidation in L. stagnalis.

7.
J Exp Biol ; 227(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38639079

RESUMO

Animals, including humans, learn and remember to avoid a novel food when its ingestion is followed, hours later, by sickness - a phenomenon initially identified during World War II as a potential means of pest control. In the 1960s, John Garcia (for whom the effect is now named) demonstrated that this form of conditioned taste aversion had broader implications, showing that it is a rapid but long-lasting taste-specific food aversion with a fundamental role in the evolution of behaviour. From the mid-1970s onward, the principles of the Garcia effect were translated to humans, showing its role in different clinical conditions (e.g. side-effects linked to chemotherapy). However, in the last two decades, the number of studies on the Garcia effect has undergone a considerable decline. Since its discovery in rodents, this form of learning was thought to be exclusive to mammals; however, we recently provided the first demonstration that a Garcia effect can be formed in an invertebrate model organism, the pond snail Lymnaea stagnalis. Thus, in this Commentary, after reviewing the experiments that led to the first characterization of the Garcia effect in rodents, we describe the recent evidence for the Garcia effect in L. stagnalis, which may pave the way for future studies in other invertebrates and mammals. This article aims to inspire future translational and ecological studies that characterize the conserved mechanisms underlying this form of learning with deep evolutionary roots, which can be used to address a range of different biological questions.


Assuntos
Condicionamento Clássico , Paladar , Animais , Humanos , Lymnaea , Caramujos , Mamíferos
8.
Artigo em Inglês | MEDLINE | ID: mdl-37382606

RESUMO

The Garcia effect is a unique form of conditioned taste aversion which requires that a novel food stimulus be followed sometime later by a sickness state associated with the novel food stimulus. The long-lasting associative memory resulting from the Garcia effect ensures that organisms avoid toxic foods in their environment. Considering its ecological relevance, we sought to investigate whether a brief encounter (5 min) with a novel, appetitive food stimulus can cause a persisting long-term memory (LTM) to form that would in turn block the Garcia effect in Lymnaea stagnalis. Furthermore, we wanted to explore whether that persisting LTM could be modified by the alteration of microRNAs via an injection of poly-L-lysine (PLL), an inhibitor of Dicer-mediated microRNA biogenesis. The Garcia effect procedure involved two observations of feeding behavior in carrot separated by a heat stress (30 °C for 1 h). Exposing snails to carrot for 5 min caused a LTM to form and persist for 1 week, effectively preventing the Garcia effect in snails. In contrast, PLL injection following the 5-min carrot exposure impaired LTM formation, allowing the Garcia effect to occur. These results provide more insight into LTM formation and the Garcia effect, an important survival mechanism.


Assuntos
Memória de Longo Prazo , Memória , Animais , Memória/fisiologia , Condicionamento Clássico , Fatores de Tempo , Lymnaea/fisiologia , Condicionamento Operante
9.
Artigo em Inglês | MEDLINE | ID: mdl-38013046

RESUMO

A novel food followed by sickness, causes a taste-specific conditioned aversion, known as the 'Garcia effect'. We recently found that both a heat shock stressor (30 °C for 1 h - HS) and the bacterial lipopolysaccharide (LPS) can be used as 'sickness-inducing' stimuli to induce a Garcia effect in the pond snail Lymnaea stagnalis. Additionally, if snails are exposed to acetylsalicylic acid (ASA) present in aspirin tablets before the LPS injection, the formation of the Garcia effect is prevented. Here, we hypothesized that exposing snails to crushed aspirin before the HS (ASA-HS) would prevent the HS-induced 'sickness state' and - therefore -the Garcia effect. Unexpectantly, the ASA-HS procedure induced a generalized and long-lasting feeding suppression. We thus investigate the molecular effects underlying this phenomenon. While the exposure to the HS alone resulted in a significant upregulation of the mRNA levels of the Heat Shock Protein 70 (HSP 70) in snails' central ring ganglia, the ASA-HS procedure induced an even greater upregulation of HSP70, suggesting that the ASA-HS combination causes a severe stress response that inhibits feeding. Additionally, we found that the ASA-HS procedure induced a significant downregulation of the mRNA levels of genes involved with the serotoninergic system which regulates feeding in snails. Finally, the ASA-HS procedure prevented HS-induced upregulation of the mRNA levels of key neuroplasticity genes. Our study indicates that two sickness-inducing stimuli can have different physiological responses even if behavioral outcomes are similar under some learning contexts.


Assuntos
Aspirina , Lipopolissacarídeos , Animais , Aspirina/farmacologia , Lipopolissacarídeos/farmacologia , Resposta ao Choque Térmico , Proteínas de Choque Térmico HSP70/genética , RNA Mensageiro , Lymnaea/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-37395798

RESUMO

The pond snail Lymnaea stagnalis exhibits various forms of associative learning including (1) operant conditioning of aerial respiration where snails are trained not to open their pneumostome in a hypoxic pond water environment using a weak tactile stimulus to their pneumostome as they attempt to open it; and (2) a 24 h-lasting taste-specific learned avoidance known as the Garcia effect utilizing a lipopolysaccharide (LPS) injection just after snails eat a novel food substance (carrot). Typically, lab-inbred snails require two 0.5 h training sessions to form long-term memory (LTM) for operant conditioning of aerial respiration. However, some stressors (e.g., heat shock or predator scent) act as memory enhancers and thus a single 0.5 h training session is sufficient to enhance LTM formation lasting at least 24 h. Here, we found that snails forming a food-aversion LTM following Garcia-effect training exhibited enhanced LTM following operant condition of aerial respiration if trained in the presence of the food substance (carrot) they became averse to. Control experiments led us to conclude that carrot becomes a 'sickness' risk signal and acts as a stressor, sufficient to enhance LTM formation for another conditioning procedure.


Assuntos
Lymnaea , Memória de Longo Prazo , Animais , Lymnaea/fisiologia , Aprendizagem , Caramujos , Condicionamento Operante/fisiologia
11.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947165

RESUMO

Social interactions play an important role in learning and memory. There is great variability in the literature regarding the effects of social isolation on cognition. Here, we investigated how memory formation was affected when Lymnaea stagnalis, our model system, were socially isolated at three different time periods: before, during or after the configural learning training procedure. Each group of snails underwent configural learning where we recorded and compared their feeding behaviour before and after the pairing of an appetitive food stimulus with predator kairomones (i.e. the training procedure). We found that isolating snails before the training procedure had no effect on their learning and memory. However, when snails were isolated either during the training procedure or immediately after the training procedure, they no longer formed memory. These data provide further insight into how isolation impacts cognitive functioning in the context of higher-order learning.


Assuntos
Condicionamento Operante , Lymnaea , Animais , Aprendizagem , Isolamento Social , Cognição , Memória de Longo Prazo
12.
Biol Bull ; 244(2): 115-127, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37725701

RESUMO

AbstractThe pond snail Lymnaea stagnalis employs aerial respiration under hypoxia and can be operantly conditioned to reduce this behavior. When applied individually, a heat shock (30 °C for 1 h) and the flavonoid quercetin enhance long-term memory formation for the operant conditioning of aerial respiration. However, when snails are exposed to quercetin before the heat shock, long-term memory is no longer enhanced. This is because quercetin prevents the heat-induced upregulation of heat-shock proteins 70 and 40. When we tested the memory outcome of operant conditioning due to the simultaneous exposure to quercetin and 30 °C, we found that Lymnaea entered a quiescent survival state. The same behavioral response occurred when snails were simultaneously exposed to quercetin and pond water made hypoxic by bubbling nitrogen through it. Thus, in this study, we performed six experiments to propose a physiological explanation for that curious behavioral response. Our results suggest that bubbling nitrogen in pond water, heating pond water to 30 °C, and bubbling nitrogen in 30 °C pond water create a hypoxic environment, to which organisms may respond by upregulating the heat-shock protein system. On the other hand, when snails experience quercetin together with these hypoxic conditions, they can no longer express the physiological stress response evoked by heat or hypoxia. Thus, the quiescent survival state could be an emergency response to survive the hypoxic condition when the heat-shock proteins cannot be activated.


Assuntos
Lymnaea , Quercetina , Animais , Quercetina/farmacologia , Hipóxia , Nitrogênio , Água
13.
Biology (Basel) ; 12(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37626986

RESUMO

Lymnaea stagnalis learns and remembers to avoid certain foods when their ingestion is followed by sickness. This rapid, taste-specific, and long-lasting aversion-known as the Garcia effect-can be formed by exposing snails to a novel taste and 1 h later injecting them with lipopolysaccharide (LPS). However, the exposure of snails to acetylsalicylic acid (ASA) for 1 h before the LPS injection, prevents both the LPS-induced sickness state and the Garcia effect. Here, we investigated novel aspects of this unique form of conditioned taste aversion and its pharmacological regulation. We first explored the transcriptional effects in the snails' central nervous system induced by the injection with LPS (25 mg), the exposure to ASA (900 nM), as well as their combined presentation in untrained snails. Then, we investigated the behavioral and molecular mechanisms underlying the LPS-induced Garcia effect and its pharmacological regulation by ASA. LPS injection, both alone and during the Garcia effect procedure, upregulated the expression levels of immune- and stress-related targets. This upregulation was prevented by pre-exposure to ASA. While LPS alone did not affect the expression levels of neuroplasticity genes, its combination with the conditioning procedure resulted in their significant upregulation and memory formation for the Garcia effect.

14.
Environ Toxicol Chem ; 42(11): 2466-2477, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37539943

RESUMO

Lymnaea stagnalis is an ecologically important, stress-sensitive, freshwater mollusk that is at risk for exposure to insecticides via agricultural practices. We provide insight into the impact insecticides have on L. stagnalis by comparing specific behaviors including feeding, locomotion, shell regeneration, and cognition between snails collected at two different sites: one contaminated by insecticides and one not. We hypothesized that each of the behaviors would be altered in the insecticide-exposed snails and that similar alterations would be induced when control snails were exposed to the contaminated environment. We found no significant differences in locomotion, feeding, and shell regeneration of insecticide-exposed L. stagnalis compared with nonexposed individuals. Significant changes in feeding and shell repair were observed in nonexposed snails inhabiting insecticide-contaminated pond water. Most importantly, snails maintained and trained in insecticide-contaminated pond water did not form configural learning, but this cognitive deficit was reversed when these snails were maintained in insecticide-free pond water. Our findings conclude that insecticides have a primarily negative impact on this higher form of cognition in L. stagnalis. Environ Toxicol Chem 2023;42:2466-2477. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Inseticidas , Lymnaea , Humanos , Animais , Inseticidas/toxicidade , Caramujos , Cognição , Água
15.
Neurobiol Learn Mem ; 203: 107775, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263390

RESUMO

Predator detection induces both behavioral and physiological responses in prey organisms. Our model organism, the pond snail Lymnaea stagnalis, shows multiple defensive behaviors in response to predator cues. In this study, we investigated and compared the transcriptional effects induced by the exposure to a predator scent (i.e., crayfish effluent - CE) in a strain of lab-inbred snails (i.e., W snails), which have been raised and maintained under standardized laboratory conditions for generations and a strain of freshly collected snails (i.e., Margo snails), which live in a crayfish-free pond. Neither the W- strain nor the Margo Lake snails used in this study have actually experienced crayfish. However, the W strain innately recognizes crayfish as a threat. We found that, following the exposure to CE, both strains showed significantly higher mRNA levels of serotonin-related genes. This is important, as the serotonergic system modulates predator detection and vigilance behaviors in pond snails. However, the expression levels of CREB1 and HSP70 were only upregulated in CE-exposed W snails but not in Margo ones. As CREB1 plays a key role in learning and memory formation, whereas HSP70 is involved in stress response, we investigated whether these differences in CREB1 and HSP70 mRNA levels would reflect differences in predator-induced learning (e.g., configural learning). We found that only W snails formed configural learning memory, whereas Margo snails did not. Thus, while both the strains molecularly respond to the CE by upregulating the serotoninergic system, only W snails behaviorally recognize CE as a threat and, therefore, form configural learning.


Assuntos
Aprendizagem , Comportamento Predatório , Animais , Comportamento Predatório/fisiologia , Odorantes , Serotonina/metabolismo , Lymnaea
16.
J Exp Biol ; 226(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37232484

RESUMO

Nutritional status plays an important role in cognitive functioning, but there is disagreement on the role that food deprivation plays in learning and memory. In this study, we investigated the behavioral and transcriptional effects induced by different lengths of food deprivation: 1 day, which is a short time period of food deprivation, and 3 days, which is an 'intermediate' level of food deprivation. Snails were subjected to different feeding regimens and then trained for operant conditioning of aerial respiration, where they received a single 0.5 h training session followed by a long-term memory (LTM) test 24 h later. Immediately after the memory test, snails were killed and the expression levels of key genes for neuroplasticity, energy balance and stress response were measured in the central ring ganglia. We found that 1 day of food deprivation was not sufficient to enhance snails' LTM formation and subsequently did not result in any significant transcriptional effects. However, 3 days of food deprivation resulted in enhanced LTM formation and caused the upregulation of neuroplasticity and stress-related genes and the downregulation of serotonin-related genes. These data provide further insight into how nutritional status and related molecular mechanisms impact cognitive function.


Assuntos
Aprendizagem , Lymnaea , Animais , Lymnaea/fisiologia , Memória de Longo Prazo/fisiologia , Condicionamento Operante/fisiologia , Privação de Alimentos/fisiologia
17.
Physiol Behav ; 263: 114137, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36841323

RESUMO

Food is not only necessary for our survival but also elicits pleasure. However, when a novel food is followed sometime later by nausea or sickness animals form a long-lasting association to avoid that food. This phenomenon is called the 'Garcia effect'. We hypothesized that lipopolysaccharide (LPS) could be used as the sickness-inducing stimulus to produce a Garcia-like effect in inbred and wild populations of Lymnaea stagnalis. We first demonstrated that the injection of 25 µg (6.25 µg/mL) of Escherichia coli-derived LPS serotype O127:B8 did not by itself alter snails' feeding behavior. Then we showed that the presentation of a novel appetitive stimulus (i.e., carrot slurry) and LPS resulted in a taste-specific and long-lasting feeding suppression (i.e., the Garcia-like effect). We also found strain-specific variations in the duration of the long-term memory (LTM). That is, while the LTM for the Garcia-like effect in W-strain snails persisted for 24h, LTM persisted for 48h in freshly collected Margo snails and their F1 offspring. Finally, we demonstrated that the exposure to a non-steroidal anti-inflammatory drug, aspirin (acetylsalicylic acid) before the LPS injection prevented both the LPS-induced sickness state and the Garcia-like effect from occurring. The results of this study may pave the way for new research that aims at (1) uncovering the conserved molecular mechanisms underlying the Garcia-like effect, (2) understanding how cognitive traits vary within and between species, and (3) creating a holistic picture of the complex dialogue between the immune and central nervous systems.


Assuntos
Lipopolissacarídeos , Memória , Animais , Lipopolissacarídeos/farmacologia , Lymnaea/fisiologia , Paladar/fisiologia , Memória de Longo Prazo , Condicionamento Operante
18.
Artigo em Inglês | MEDLINE | ID: mdl-36622417

RESUMO

MicroRNAs (miRNAs) play an important role in learning and memory formation by controlling the expression of genes through epigenetic processes. Although miRNAs unquestionably play a role in memory, past literature focusing on whether miRNAs play key roles in the consolidation of associative long-term memory in Lymnaea contained confounding variables. Using operant conditioning of aerial respiratory behaviour, we investigated long-term memory (LTM) formation after injection of poly-L-lysine (PLL), an inhibitor of Dicer-mediated miRNA biogenesis, in Lymnaea stagnalis. Homeostatic breathing experiments were also performed to test whether PLL affects breathing. Homeostatic breathing was significantly suppressed 45 min but not 24 h after PLL injection. The operant conditioning procedure involved two 30-min training sessions separated by 1 h to cause LTM. Using this operant conditioning procedure, LTM formation was significantly impaired when snails were injected with PLL 15 min after the second training session. In contrast, when snails were injected with PLL 24 h before the first training session, LTM formation was not impaired. These results are consistent with past literature and highlight an important role for miRNAs in LTM formation.


Assuntos
Condicionamento Operante , Lymnaea , Memória de Longo Prazo , MicroRNAs , Animais , Lymnaea/fisiologia
19.
Nutr Neurosci ; 26(3): 217-227, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35156560

RESUMO

Nutritional status affects cognitive function in many types of organisms. In the pond snail Lymnaea stagnalis, 1 day of food deprivation enhances taste aversion learning ability by decreasing the serotonin (5-hydroxytryptamin; 5-HT) content in the central nervous system (CNS). On the other hand, after 5 days of food deprivation, learning ability and the CNS 5-HT concentration return to basal levels. How food deprivation leads to alterations of 5-HT levels in the CNS, however, is unknown. Here, we measured the concentration of the 5-HT precursor tryptophan in the hemolymph and CNS, and demonstrated that the CNS tryptophan concentration was higher in 5-day food-deprived snails than in non-food-deprived or 1-day food-deprived snails, whereas the hemolymph tryptophan concentration was not affected by the duration of food deprivation. This finding suggests the existence of a mediator of the CNS tryptophan concentration independent of food deprivation. To identify the mediator, we investigated autophagic flux in the CNS under different food deprivation conditions. We found that autophagic flux was significantly upregulated by inhibition of the tropomyosin receptor kinase (Trk)-Akt-mechanistic target of rapamycin complex 1 (MTORC1) pathway in the CNS of 5-day food-deprived snails. Moreover, when autophagy was inhibited, the CNS 5-HT content was significantly downregulated in 5-day food-deprived snails. Our results suggest that the hemolymph tryptophan concentration and autophagic flux in the CNS cooperatively regulate learning ability affected by different durations of food deprivation. This mechanism may underlie the selection of behaviors appropriate for animal survival depending on the degree of nutrition.


Assuntos
Privação de Alimentos , Serotonina , Animais , Privação de Alimentos/fisiologia , Serotonina/metabolismo , Triptofano , Hemolinfa/química , Paladar/fisiologia , Aprendizagem da Esquiva/fisiologia , Sistema Nervoso Central/metabolismo , Lymnaea/fisiologia
20.
Naunyn Schmiedebergs Arch Pharmacol ; 395(12): 1573-1585, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100758

RESUMO

By employing a reductionistic (but not simplistic) approach using an established invertebrate model system, the pond snail Lymnaea stagnalis, we investigated whether (1) lipopolysaccharide (LPS)-induced inflammation would cause a sickness state and impair cognitive function, and-if so-(2) would aspirin (acetylsalicylic acid-ASA) restore the impaired cognition. To test our hypotheses, we first determined if the injection of 25 mg (6.25 µg/mL) of Escherichia coli-derived LPS serotype O127:B8 altered homeostatic behavior, aerial respiration, and then determined if LPS altered memory formation when this behavior was operantly conditioned. Next, we determined if ASA altered the LPS-induced changes in both aerial respiration and cognitive functions. LPS induced a sickness state that increased aerial respiration and altered the ability of snails to form or recall long-term memory. ASA reverted the LPS-induced sickness state and thus allowed long-term memory both to be formed and recalled. We confirmed our hypotheses and provided the first evidence in an invertebrate model system that an injection of LPS results in a sickness state that obstructs learning and memory, and this impairment can be prevented by a non-steroidal anti-inflammatory.


Assuntos
Lipopolissacarídeos , Memória , Animais , Lipopolissacarídeos/toxicidade , Condicionamento Operante , Aspirina/farmacologia , Lymnaea , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA