Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 14(5): 2453-2464, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859853

RESUMO

ONC201 (originally discovered as TRAIL-Inducing Compound #10 or TIC10) and analogue ONC206 have been found to induce an integrated stress response with suggested primary targets and mechanisms involving targeting mitochondrial protein ClpP and antagonism of dopamine receptors D2/3 (DRD2/3). We hypothesized that dopamine, the agonist of DRD2, may counteract ONC201 or ONC206 for DRD2/3 and impair the anti-cancer effect of ONC201 or ONC206, thus protect the tumor cells from the cytotoxic effect of ONC201 or ONC206. We therefore pre-treated cancer cells from different tissue origins including breast cancer, pancreatic cancer, colorectal cancer, and diffuse midline glioma (DMG) with dopamine, followed by treatment of ONC201, ONC206 or ONC212. We observed that 48 hours of pre-treatment with dopamine impaired the cell viability suppression effect of ONC201, ONC206 and ONC212 in pancreatic cancer cells and colorectal cancer cells. We pre-treated multiple cancer cell lines with dopamine for one week followed by ONC201, ONC206, or ONC212 treatment and performed colony assays. Pre-treatment with dopamine impaired the anti-cancer effect of ONC201 or ONC206 in pancreatic cancer and colorectal cancer. Impairment of ONC212 effect by pre-treatment with dopamine was also seen in colony assay for colorectal cancer, but not in pancreatic cancer cells by colony assay. No protection from killing by imipridones was observed with DRD2 agonist sumanirole in tumor cells, or with brain tumor cell lines pretreated with dopamine. Immunoblotting was conducted to investigate whether dopamine pre-treatment impacts signaling pathways reported to be affected by ONC201. The dopamine pre-treatment did not impact changes in ATF4, CHOP, DR5 and ClpX which were reported to be affected by ONC201. The mechanism of impairment of ONC201/206/212 effect caused by dopamine pre-treatment appears to involve upregulation of anti-apoptotic p-Bad, XIAP, FLIP and pAkt. Our results shed light on mechanisms of cancer cell protection by dopamine after imipridone treatment, heterogeneity among different tumor cell types, and suggest that effects of dopamine adaptation on tumor cells may impact on cell survival pathways in ways that may or may not depend on expression of dopamine receptors.

2.
Neurooncol Adv ; 6(1): vdae035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596718

RESUMO

Background: Outcomes for children with high-grade gliomas (HGG) remain poor. This multicenter phase II trial evaluated whether concurrent use of vorinostat or bevacizumab with focal radiotherapy (RT) improved 1-year event-free survival (EFS) compared to temozolomide in children with newly diagnosed HGG who received maintenance temozolomide and bevacizumab. Methods: Patients ≥ 3 and < 22 years with localized, non-brainstem HGG were randomized to receive RT (dose 54-59.4Gy) with vorinostat, temozolomide, or bevacizumab followed by 12 cycles of bevacizumab and temozolomide maintenance therapy. Results: Among 90 patients randomized, the 1-year EFS for concurrent bevacizumab, vorinostat, or temozolomide with RT was 43.8% (±8.8%), 41.4% (±9.2%), and 59.3% (±9.5%), respectively, with no significant difference among treatment arms. Three- and five-year EFS for the entire cohort was 14.8% and 13.4%, respectively, with no significant EFS difference among the chemoradiotherapy arms. IDH mutations were associated with more favorable EFS (P = .03), whereas H3.3 K27M mutations (P = .0045) and alterations in PIK3CA or PTEN (P = .025) were associated with worse outcomes. Patients with telomerase- and alternative lengthening of telomeres (ALT)-negative tumors (n = 4) had an EFS of 100%, significantly greater than those with ALT or telomerase, or both (P = .002). While there was no difference in outcomes based on TERT expression, high TERC expression was associated with inferior survival independent of the telomere maintenance mechanism (P = .0012). Conclusions: Chemoradiotherapy with vorinostat or bevacizumab is not superior to temozolomide in children with newly diagnosed HGG. Patients with telomerase- and ALT-negative tumors had higher EFS suggesting that, if reproduced, mechanism of telomere maintenance should be considered in molecular-risk stratification in future studies.

3.
Am J Cancer Res ; 13(12): 6241-6255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187038

RESUMO

There is a demonstrated need for new chemotherapy options in pediatric oncology, as pediatric solid tumors continue to plateau at 60% with event-free survival. Imipridones, a novel class of small molecules, represent a potential new therapeutic option, with promising pre-clinical data and emerging clinical trial data in adult malignancies. ONC201, ONC206, and ONC212 are imipridones showing pro-apoptotic anti-cancer response. Using cell viability assays, and protein immunoblotting, we were able to demonstrate single-agent efficacy of all 3 imipridones inducing cell death in pediatric solid tumor cell lines, including osteosarcoma, malignant peripheral nerve sheath tumors, Ewing sarcoma (EWS), and neuroblastoma. ONC201 displayed IC50 values for non-H3K27M-mutated EWS cell lines ranging from 0.86 µM (SK-N-MC) to 2.76 µM (RD-ES), which were comparable to the range of IC50 values for H3K27M-mutated DIPG cells lines (range 1.06 to 1.56 µM). ONC212 demonstrated the highest potency in single-agent cell killing, followed by ONC206, and ONC201. Additionally, pediatric solid tumor cells were treated with single-agent therapy with histone deacetylase inhibitors (HDACi) vorinostat, entinostat, and panobinostat, showing cell killing with all 3 HDACi drugs, with panobinostat showing the greatest potency. We demonstrate that dual-agent therapy with combinations of imipridones and HDACi lead to synergistic cell killing and apoptosis in all pediatric solid tumor cell lines tested, with ONC212 and panobinostat combinations demonstrating maximal potency. The imipridones induced the integrated stress response with ATF4 and TRAIL receptor upregulation, as well as reduced expression of ClpX. Hyperacetylation of H3K27 was associated with synergistic killing of tumor cells following exposure to imipridone plus HDAC inhibitor therapies. Our results introduce a novel class of small molecules to treat pediatric solid tumors in a precision medicine framework. Use of impridones in pediatric oncology is novel and shows promising pre-clinical efficacy in pediatric solid tumors, including in combination with HDAC inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA