Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5491, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679340

RESUMO

Fungal cell walls undergo continual remodeling that generates ß-1,3-glucan fragments as products of endo-glycosyl hydrolases (GHs), which can be recognized as pathogen-associated molecular patterns (PAMPs) and trigger plant immune responses. How fungal pathogens suppress those responses is often poorly understood. Here, we study mechanisms underlying the suppression of ß-1,3-glucan-triggered plant immunity by the blast fungus Magnaporthe oryzae. We show that an exo-ß-1,3-glucanase of the GH17 family, named Ebg1, is important for fungal cell wall integrity and virulence of M. oryzae. Ebg1 can hydrolyze ß-1,3-glucan and laminarin into glucose, thus suppressing ß-1,3-glucan-triggered plant immunity. However, in addition, Ebg1 seems to act as a PAMP, independent of its hydrolase activity. This Ebg1-induced immunity appears to be dampened by the secretion of an elongation factor 1 alpha protein (EF1α), which interacts and co-localizes with Ebg1 in the apoplast. Future work is needed to understand the mechanisms behind Ebg1-induced immunity and its suppression by EF1α.


Assuntos
Ascomicetos , Fator 1 de Elongação de Peptídeos , Parede Celular , Imunidade Vegetal
2.
J Fungi (Basel) ; 9(5)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37233285

RESUMO

The fungal pathogen Magnaporthe oryzae secretes a large number of effector proteins to facilitate infection, most of which are not functionally characterized. We selected potential candidate effector genes from the genome of M. oryzae, field isolate P131, and cloned 69 putative effector genes for functional screening. Utilizing a rice protoplast transient expression system, we identified that four candidate effector genes, GAS1, BAS2, MoCEP1 and MoCEP2 induced cell death in rice. In particular, MoCEP2 also induced cell death in Nicotiana benthamiana leaves through Agrobacteria-mediated transient gene expression. We further identified that six candidate effector genes, MoCEP3 to MoCEP8, suppress flg22-induced ROS burst in N. benthamiana leaves upon transient expression. These effector genes were highly expressed at a different stage after M. oryzae infection. We successfully knocked out five genes in M. oryzae, MoCEP1, MoCEP2, MoCEP3, MoCEP5 and MoCEP7. The virulence tests suggested that the deletion mutants of MoCEP2, MoCEP3 and MoCEP5 showed reduced virulence on rice and barley plants. Therefore, those genes play an important role in pathogenicity.

3.
New Phytol ; 238(3): 1163-1181, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36772852

RESUMO

In eukaryotes, the majority of newly synthesized integral membrane proteins are inserted into the endoplasmic reticulum (ER) membrane before transferred to their functional sites. The conserved ER membrane complex (EMC) takes part in the insertion process for tail-anchored membrane proteins. However, the function of EMC in phytopathogenic fungi has not been characterized. Here, we report the identification and functional characterization of two EMC subunits MoEmc5 and MoEmc2 in Magnaporthe oryzae. The knockout mutants ΔMoemc5 and ΔMoemc2 exhibit substantial defect in autophagy, pathogenicity, cell wall integrity, and magnesium ion sensitivity. We demonstrate that the autophagy process was severely impaired in the ΔMoemc5 and ΔMoemc2 mutants because of the low-protein steady-state level of Atg9, the sole membrane-associated autophagy protein. Furthermore, the protein level of membrane proteins Chs4, Fks1, and MoMnr2 is also significantly reduced in the ΔMoemc5 and ΔMoemc2 strains, leading to their supersensitivity to Calcofluor white, Congo red, and magnesium. In addition, MoEmc5, but not MoEmc2, acts as a magnesium transporter independent of its EMC function. Magnaporthe oryzae EMC regulates the biogenesis of membrane proteins for autophagy and virulence; therefore, EMC subunits could be potential targets for fungicide design in the future.


Assuntos
Magnaporthe , Oryza , Virulência , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Magnésio/metabolismo , Retículo Endoplasmático/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA