Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Scand J Clin Lab Invest ; 80(5): 381-387, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32400228

RESUMO

Multiple small studies have suggested that women with pre-eclampsia present elevated levels of C-reactive protein (CRP) and interleukin-6 (IL-6). However, little is known regarding the source of this CRP and IL-6 increase. Therefore, the aim of this study was to evaluate the relationship between CRP and IL-6 levels with pre-eclampsia considering different confounding factors. Using data from a large Colombian case-control study (3,590 cases of pre-eclampsia and 4,564 normotensive controls), CRP and IL-6 levels were measured in 914 cases and 1297 controls. The association between maternal serum levels of CRP and IL-6 with pre-eclampsia risk was evaluated using adjusted logistic regression models. Pre-eclampsia was defined as presence of blood pressure ≥140/90 mmHg and proteinuria ≥300mg/24 h (or ≥1 + dipstick). There was no evidence of association between high levels of CRP and IL-6 with pre-eclampsia after adjusting for the following factors: maternal and gestational age, ethnicity, place and year of recruitment, multiple-pregnancy, socio-economic position, smoking, and presence of infections during pregnancy. The adjusted OR for 1SD increase in log-CRP and log-IL-6 was 0.96 (95%CI 0.85, 1.08) and 1.09 (95%CI 0.97, 1.22), respectively. Although previous reports have suggested an association between high CRP and IL-6 levels with pre-eclampsia, sample size may lack the sufficient power to draw robust conclusions, and this association is likely to be explained by unaccounted biases. Our results, the largest case-control study reported up to date, demonstrate that there is not a causal association between elevated levels of CRP and IL-6 and the presence of pre-eclampsia.


Assuntos
Proteína C-Reativa/metabolismo , Interleucina-6/sangue , Pré-Eclâmpsia/sangue , Adolescente , Biomarcadores/sangue , Pressão Sanguínea/fisiologia , Estudos de Casos e Controles , Feminino , Feto , Idade Gestacional , Humanos , Modelos Logísticos , Pré-Eclâmpsia/diagnóstico , Gravidez , Adulto Jovem
2.
Sci Data ; 1: 140033, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25977790

RESUMO

The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). By comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Influenza A , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Animais , Coleta de Dados , Bases de Dados Factuais , Humanos , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/fisiologia , Influenza Humana/fisiopatologia , Camundongos , Infecções por Orthomyxoviridae/fisiopatologia , Biologia de Sistemas
3.
PLoS One ; 8(7): e69374, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935999

RESUMO

Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel "crowd-based" approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse 'omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models.


Assuntos
Células Epiteliais/metabolismo , Genes Reguladores , Pulmão/metabolismo , Modelos Estatísticos , Orthomyxoviridae/patogenicidade , Mucosa Respiratória/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Animais , Células Epiteliais/imunologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Pulmão/imunologia , Pulmão/virologia , Orthomyxoviridae/fisiologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Transcriptoma , Virulência , Replicação Viral
4.
mBio ; 4(4)2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23919993

RESUMO

UNLABELLED: Systems biology offers considerable promise in uncovering novel pathways by which viruses and other microbial pathogens interact with host signaling and expression networks to mediate disease severity. In this study, we have developed an unbiased modeling approach to identify new pathways and network connections mediating acute lung injury, using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model pathogen. We utilized a time course of matched virologic, pathological, and transcriptomic data within a novel methodological framework that can detect pathway enrichment among key highly connected network genes. This unbiased approach produced a high-priority list of 4 genes in one pathway out of over 3,500 genes that were differentially expressed following SARS-CoV infection. With these data, we predicted that the urokinase and other wound repair pathways would regulate lethal versus sublethal disease following SARS-CoV infection in mice. We validated the importance of the urokinase pathway for SARS-CoV disease severity using genetically defined knockout mice, proteomic correlates of pathway activation, and pathological disease severity. The results of these studies demonstrate that a fine balance exists between host coagulation and fibrinolysin pathways regulating pathological disease outcomes, including diffuse alveolar damage and acute lung injury, following infection with highly pathogenic respiratory viruses, such as SARS-CoV. IMPORTANCE: Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and 2003, and infected patients developed an atypical pneumonia, acute lung injury (ALI), and acute respiratory distress syndrome (ARDS) leading to pulmonary fibrosis and death. We identified sets of differentially expressed genes that contribute to ALI and ARDS using lethal and sublethal SARS-CoV infection models. Mathematical prioritization of our gene sets identified the urokinase and extracellular matrix remodeling pathways as the most enriched pathways. By infecting Serpine1-knockout mice, we showed that the urokinase pathway had a significant effect on both lung pathology and overall SARS-CoV pathogenesis. These results demonstrate the effective use of unbiased modeling techniques for identification of high-priority host targets that regulate disease outcomes. Similar transcriptional signatures were noted in 1918 and 2009 H1N1 influenza virus-infected mice, suggesting a common, potentially treatable mechanism in development of virus-induced ALI.


Assuntos
Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/virologia , Interações Hospedeiro-Patógeno , Pulmão/patologia , Pulmão/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Coagulação Sanguínea , Modelos Animais de Doenças , Fibrinólise , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteoma/análise , Fatores de Tempo , Ativador de Plasminogênio Tipo Uroquinase/genética
5.
J Virol ; 87(7): 3885-902, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23365422

RESUMO

The severe acute respiratory syndrome coronavirus accessory protein ORF6 antagonizes interferon signaling by blocking karyopherin-mediated nuclear import processes. Viral nuclear import antagonists, expressed by several highly pathogenic RNA viruses, likely mediate pleiotropic effects on host gene expression, presumably interfering with transcription factors, cytokines, hormones, and/or signaling cascades that occur in response to infection. By bioinformatic and systems biology approaches, we evaluated the impact of nuclear import antagonism on host expression networks by using human lung epithelial cells infected with either wild-type virus or a mutant that does not express ORF6 protein. Microarray analysis revealed significant changes in differential gene expression, with approximately twice as many upregulated genes in the mutant virus samples by 48 h postinfection, despite identical viral titers. Our data demonstrated that ORF6 protein expression attenuates the activity of numerous karyopherin-dependent host transcription factors (VDR, CREB1, SMAD4, p53, EpasI, and Oct3/4) that are critical for establishing antiviral responses and regulating key host responses during virus infection. Results were confirmed by proteomic and chromatin immunoprecipitation assay analyses and in parallel microarray studies using infected primary human airway epithelial cell cultures. The data strongly support the hypothesis that viral antagonists of nuclear import actively manipulate host responses in specific hierarchical patterns, contributing to the viral pathogenic potential in vivo. Importantly, these studies and modeling approaches not only provide templates for evaluating virus antagonism of nuclear import processes but also can reveal candidate cellular genes and pathways that may significantly influence disease outcomes following severe acute respiratory syndrome coronavirus infection in vivo.


Assuntos
Redes Reguladoras de Genes/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Primers do DNA/genética , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Pulmão/citologia , Análise em Microsséries , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Biologia de Sistemas/métodos
6.
Proteomics ; 11(23): 4569-77, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21956884

RESUMO

Nanoparticle biological activity, biocompatibility and fate can be directly affected by layers of readily adsorbed host proteins in biofluids. Here, we report a study on the interactions between human blood plasma proteins and nanoparticles with a controlled systematic variation of properties using (18)O-labeling and LC-MS-based quantitative proteomics. We developed a novel protocol to both simplify isolation of nanoparticle bound proteins and improve reproducibility. LC-MS analysis identified and quantified 88 human plasma proteins associated with polystyrene nanoparticles consisting of three different surface chemistries and two sizes, as well as, for four different exposure times (for a total of 24 different samples). Quantitative comparison of relative protein abundances was achieved by spiking an (18)O-labeled "universal" reference into each individually processed unlabeled sample as an internal standard, enabling simultaneous application of both label-free and isotopic labeling quantification across the entire sample set. Clustering analysis of the quantitative proteomics data resulted in distinctive patterns that classified the nanoparticles based on their surface properties and size. In addition, temporal data indicated that the formation of the stable protein corona was at equilibrium within 5 min. The comprehensive quantitative proteomics results obtained in this study provide rich data for computational modeling and have potential implications towards predicting nanoparticle biocompatibility.


Assuntos
Proteínas Sanguíneas/análise , Nanopartículas/química , Proteômica/métodos , Adsorção , Análise de Variância , Proteínas Sanguíneas/metabolismo , Cromatografia Líquida/métodos , Análise por Conglomerados , Humanos , Espectrometria de Massas/métodos , Tamanho da Partícula , Poliestirenos/química , Ligação Proteica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA