Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 8(23): 8549-8561, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33282568

RESUMO

The growing adoption of biobased materials for electronic, energy conversion, and storage devices has relied on high-grade or refined cellulosic compositions. Herein, lignocellulose nanofibrils (LCNF), obtained from simple mechanical fibrillation of wood, are proposed as a source of continuous carbon microfibers obtained by wet spinning followed by single-step carbonization at 900 °C. The high lignin content of LCNF (∼28% based on dry mass), similar to that of the original wood, allowed the synthesis of carbon microfibers with a high carbon yield (29%) and electrical conductivity (66 S cm-1). The incorporation of anionic cellulose nanofibrils (TOCNF) enhanced the spinnability and the porous morphology of the carbon microfibers, making them suitable platforms for electrochemical double layer capacitance (EDLC). The increased loading of LCNF in the spinning dope resulted in carbon microfibers of enhanced carbon yield and conductivity. Meanwhile, TOCNF influenced the pore evolution and specific surface area after carbonization, which significantly improved the electrochemical double layer capacitance. When the carbon microfibers were directly applied as fiber-shaped supercapacitors (25 F cm-3), they displayed a remarkably long-term electrochemical stability (>93% of the initial capacitance after 10 000 cycles). Solid-state symmetric fiber supercapacitors were assembled using a PVA/H2SO4 gel electrolyte and resulted in an energy and power density of 0.25 mW h cm-3 and 65.1 mW cm-3, respectively. Overall, the results indicate a green and facile route to convert wood into carbon microfibers suitable for integration in wearables and energy storage devices and for potential applications in the field of bioelectronics.

2.
Biomacromolecules ; 21(2): 878-891, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31895545

RESUMO

Hydrogels of TEMPO-oxidized nanocellulose were stabilized for dry-jet wet spinning using a shell of cellulose dissolved in 1,5-diazabicyclo[4.3.0]non-5-enium propionate ([DBNH][CO2Et]), a protic ionic liquid (PIL). Coagulation in an acidic water bath resulted in continuous core-shell filaments (CSFs) that were tough and flexible with an average dry (and wet) toughness of ∼11 (2) MJ·m-3 and elongation of ∼9 (14) %. The CSF morphology, chemical composition, thermal stability, crystallinity, and bacterial activity were assessed using scanning electron microscopy with energy-dispersive X-ray spectroscopy, liquid-state nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, pyrolysis gas chromatography-mass spectrometry, wide-angle X-ray scattering, and bacterial cell culturing, respectively. The coaxial wet spinning yields PIL-free systems carrying on the surface the cellulose II polymorph, which not only enhances the toughness of the filaments but facilities their functionalization.


Assuntos
Celulose/síntese química , Hidrogéis/síntese química , Líquidos Iônicos/síntese química , Nanofibras/química , Celulose/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrogéis/análise , Líquidos Iônicos/análise , Nanofibras/análise , Resistência à Tração
3.
Sci Rep ; 9(1): 16691, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723231

RESUMO

Coagulation is a critical process in the assembly of cellulose nanofibrils into filaments by wet spinning; however, so far, the role of the coagulation solvent has not been systematically elucidated in this context. This work considers organic non-solvents (ethanol, acetone) and aqueous electrolyte solutions (NaCl(aq), HCl(aq), CaCl2(aq)) for the coagulation of negatively charged cellulose nanofibrils via wet spinning. The associated mechanisms of coagulation with such non-solvents resulted in different spinnability, coagulation and drying time. The properties of the achieved filaments varied depending strongly on the coagulant used: filaments obtained from electrolytes (using Ca2+ and H+ as counterions) demonstrated better water/moisture stability and thermomechanical properties. In contrast, the filaments formed from organic non-solvents (with Na+ as counterions) showed high moisture sorption and low hornification when subjected to cycles of high and low humidity (dynamic vapor sorption experiments) and swelled extensively upon immersion in water. Our observations highlight the critical role of counter-ions and non-solvents in filament formation and performance. Some of the fundamental aspects are further revealed by using quartz crystal microgravimetry with model films of nanocelluloses subjected to the respective solvent exchange.

4.
ACS Appl Mater Interfaces ; 10(32): 27287-27296, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30014693

RESUMO

A continuous and scalable method for the wet spinning of cellulose nanofibrils (CNFs) is introduced in a core/shell configuration. Control on the interfacial interactions was possible by the choice of the shell material and coagulant, as demonstrated here with guar gum (GG) and cellulose acetate (CA). Upon coagulation in acetone, ethanol, or water, GG and CA formed supporting polymer shells that interacted to different degrees with the CNF core. Coagulation rate was shown to markedly influence the CNF orientation in the filament and, as a result, its mechanical strength. The fastest coagulation noted for the CNF/GG core/shell system in acetone led to an orientation index of ∼0.55 (Herman's orientation parameter of 0.40), Young's modulus of ∼2.1 GPa, a tensile strength of ∼70 MPa, and a tenacity of ∼8 cN/tex. The system that underwent the slowest coagulation rate (CNF/GG in ethanol) displayed a limited CNF orientation but achieved an intermediate level of mechanical resistance, owing to the strong core/shell interfacial affinity. By using CA as the supporting shell, it was possible to spin CNF into filaments with high water absorption capacity (43 g water/g dry filament). This was explained by the fact that water (used as the coagulant for CA) limited the densification of the CNF core structure, yielding filaments with high accessible area and pore density.

5.
Sci Rep ; 6: 30695, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27465828

RESUMO

Hydrogels comprising cellulose nanofibrils (CNF) were used in the synthesis of continuous filaments via wet-spinning. Hydrogel viscosity and spinnability, as well as orientation and strength of the spun filaments, were found to be strongly affected by the osmotic pressure as determined by CNF surface charge and solid fraction in the spinning dope. The tensile strength, Young's modulus and degree of orientation (wide-angle X-ray scattering, WAXS) of filaments produced without drawing were 297 MPa, 21 GPa and 83%, respectively, which are remarkable values. A thorough investigation of the interactions with water using dynamic vapour sorption (DVS) experiments revealed the role of sorption sites in the stability of the filaments in wet conditions. DVS analysis during cycles of relative humidity (RH) between 0 and 95% revealed major differences in water uptake by the filaments spun from hydrogels of different charge density (CNF and TEMPO-oxidised CNF). It is concluded that the mechanical performance of filaments in the presence of water deteriorates drastically by the same factors that facilitate fibril alignment and, consequently, enhance dry strength. For the most oriented filaments, the maximum water vapour sorption at 95% RH was 39% based on dry weight.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA