Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Function (Oxf) ; 5(3): zqae012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706963

RESUMO

Acute kidney injury (AKI) is a heterogeneous syndrome, comprising diverse etiologies of kidney insults that result in high mortality and morbidity if not well managed. Although great efforts have been made to investigate underlying pathogenic mechanisms of AKI, there are limited therapeutic strategies available. Extracellular vesicles (EV) are membrane-bound vesicles secreted by various cell types, which can serve as cell-free therapy through transfer of bioactive molecules. In this review, we first overview the AKI syndrome and EV biology, with a particular focus on the technical aspects and therapeutic application of cell culture-derived EVs. Second, we illustrate how multi-omic approaches to EV miRNA, protein, and genomic cargo analysis can yield new insights into their mechanisms of action and address unresolved questions in the field. We then summarize major experimental evidence regarding the therapeutic potential of EVs in AKI, which we subdivide into stem cell and non-stem cell-derived EVs. Finally, we highlight the challenges and opportunities related to the clinical translation of animal studies into human patients.


Assuntos
Injúria Renal Aguda , Vesículas Extracelulares , Injúria Renal Aguda/terapia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Humanos , Vesículas Extracelulares/transplante , Vesículas Extracelulares/metabolismo , Animais , Técnicas de Cultura de Células/métodos , MicroRNAs/metabolismo , MicroRNAs/genética
2.
Biomaterials ; 306: 122502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354518

RESUMO

Extracellular vesicles (EVs) from cultured cells or bodily fluids have been demonstrated to show therapeutic value following myocardial infarction. However, challenges in donor variation, EV generation and isolation methods, and material availability have hindered their therapeutic use. Here, we show that human clinical-grade platelet concentrates from a blood establishment can be used to rapidly generate high concentrations of high purity EVs from sero-converted platelet lysate (SCPL-EVs) with minimal processing, using size-exclusion chromatography. Processing removed serum carrier proteins, coagulation factors and complement proteins from the original platelet lysate and the resultant SCPL-EVs carried a range of trophic factors and multiple recognised cardioprotective miRNAs. As such, SCPL-EVs protected rodent and human cardiomyocytes from hypoxia/re-oxygenation injury and stimulated angiogenesis of human cardiac microvessel endothelial cells. In a mouse model of myocardial infarction with reperfusion, SCPL-EV delivery using echo-guided intracavitary percutaneous injection produced large improvements in cardiac function, reduced scar formation and promoted angiogenesis. Since platelet-based biomaterials are already widely used clinically, we believe that this therapy could be rapidly suitable for a human clinical trial.


Assuntos
Vesículas Extracelulares , Infarto do Miocárdio , Traumatismo por Reperfusão , Camundongos , Animais , Humanos , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão/metabolismo
3.
Nat Commun ; 14(1): 7249, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945565

RESUMO

The gut microbiome and its metabolites are increasingly implicated in several cardiovascular diseases, but their role in human myocardial infarction (MI) injury responses have yet to be established. To address this, we examined stool samples from 77 ST-elevation MI (STEMI) patients using 16 S V3-V4 next-generation sequencing, metagenomics and machine learning. Our analysis identified an enriched population of butyrate-producing bacteria. These findings were then validated using a controlled ischemia/reperfusion model using eight nonhuman primates. To elucidate mechanisms, we inoculated gnotobiotic mice with these bacteria and found that they can produce beta-hydroxybutyrate, supporting cardiac function post-MI. This was further confirmed using HMGCS2-deficient mice which lack endogenous ketogenesis and have poor outcomes after MI. Inoculation increased plasma ketone levels and provided significant improvements in cardiac function post-MI. Together, this demonstrates a previously unknown role of gut butyrate-producers in the post-MI response.


Assuntos
Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Animais , Camundongos , Butiratos/metabolismo , Coração , Corpos Cetônicos
4.
J Biomed Sci ; 30(1): 79, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37704991

RESUMO

Platelets are small anucleated blood cells primarily known for their vital hemostatic role. Allogeneic platelet concentrates (PCs) collected from healthy donors are an essential cellular product transfused by hospitals to control or prevent bleeding in patients affected by thrombocytopenia or platelet dysfunctions. Platelets fulfill additional essential functions in innate and adaptive immunity and inflammation, as well as in wound-healing and tissue-repair mechanisms. Platelets contain mitochondria, lysosomes, dense granules, and alpha-granules, which collectively are a remarkable reservoir of multiple trophic factors, enzymes, and signaling molecules. In addition, platelets are prone to release in the blood circulation a unique set of extracellular vesicles (p-EVs), which carry a rich biomolecular cargo influential in cell-cell communications. The exceptional functional roles played by platelets and p-EVs explain the recent interest in exploring the use of allogeneic PCs as source material to develop new biotherapies that could address needs in cell therapy, regenerative medicine, and targeted drug delivery. Pooled human platelet lysates (HPLs) can be produced from allogeneic PCs that have reached their expiration date and are no longer suitable for transfusion but remain valuable source materials for other applications. These HPLs can substitute for fetal bovine serum as a clinical grade xeno-free supplement of growth media used in the in vitro expansion of human cells for transplantation purposes. The use of expired allogeneic platelet concentrates has opened the way for small-pool or large-pool allogeneic HPLs and HPL-derived p-EVs as biotherapy for ocular surface disorders, wound care and, potentially, neurodegenerative diseases, osteoarthritis, and others. Additionally, allogeneic platelets are now seen as a readily available source of cells and EVs that can be exploited for targeted drug delivery vehicles. This article aims to offer an in-depth update on emerging translational applications of allogeneic platelet biotherapies while also highlighting their advantages and limitations as a clinical modality in regenerative medicine and cell therapies.


Assuntos
Vesículas Extracelulares , Transplante de Células-Tronco Hematopoéticas , Humanos , Medicina Regenerativa , Plaquetas , Terapia Baseada em Transplante de Células e Tecidos
5.
ACS Biomater Sci Eng ; 9(2): 719-731, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36595653

RESUMO

Cell therapy has significant therapeutic potential but is often limited by poor donor cell retention and viability at the host implantation site. Biomaterials can improve cell retention by providing cells with increased cell-cell and cell-matrix contacts and materials that allow three-dimensional cell culture to better recapitulate native cell morphology and function. In this study, we engineered a scaffold that allows for cell encapsulation and sustained three-dimensional cell culture. Since cell therapy is largely driven by paracrine secretions, the material was fabricated by electrospinning to have a large internal surface area, micrometer-thin walls, and nanoscale surface pores to allow for nutrient exchange without early cell permeation. The material is degradable, which allows for less invasive removal of the implant. Here, a biodegradable poly(lactic-co-glycolic acid) (PLGA) microtube array membrane was fabricated. In vitro testing showed that the material supported the culture of human dermal fibroblasts for at least 21 days, with paracrine secretion of pro-angiogenic FGF2. In vivo xenotransplantation of human cells in an immunocompetent mouse showed that donor cells could be maintained for more than one month and the material showed no obvious toxicity. Analysis of gene expression and tissue histology surrounding the implant showed that the material produced muted inflammatory and immune responses compared to a permanent implant and increased markers of angiogenesis.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Camundongos , Humanos , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Sobrevivência Celular
6.
Biomedicines ; 10(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36551899

RESUMO

There is significant interest in the role of stem cells in cardiac regeneration, and yet little is known about how cardiac disease progression affects native cardiac stem cells in the human heart. In this brief report, cardiac mesenchymal stem cell-like cells (CMSCLC) from the right atria of a 21-year-old female patient with a bicuspid aortic valve and aortic stenosis (referred to as biscuspid aortic valve disease BAVD-CMSCLC), were compared with those of a 78-year-old female patient undergoing coronary artery bypass surgery (referred to as coronary artery disease CAD-CMSCLC). Cells were analyzed for expression of MSC markers, ability to form CFU-Fs, metabolic activity, cell cycle kinetics, expression of NANOG and p16, and telomere length. The cardiac-derived cells expressed MSC markers and were able to form CFU-Fs, with higher rate of formation in CAD-CMSCLCs. BAVD-CMSCLCs did not display normal MSC morphology, had a much lower cell doubling rate, and were less metabolically active than CAD-CMSCLCs. Cell cycle analysis revealed a population of BAVD-CMSCLC in G2/M phase, whereas the bulk of CAD-CMSCLC were in the G0/G1 phase. BAVD-CMSCLC had lower expression of NANOG and shorter telomere lengths, but higher expression of p16 compared with the CAD-CMSCLC. In conclusion, BAVD-CMSCLC have a prematurely aged phenotype compared with CAD-CMSCLC, despite originating from a younger patient.

7.
Circulation ; 146(25): 1950-1967, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36420731

RESUMO

BACKGROUND: Cardiac regeneration after injury is limited by the low proliferative capacity of adult mammalian cardiomyocytes (CMs). However, certain animals readily regenerate lost myocardium through a process involving dedifferentiation, which unlocks their proliferative capacities. METHODS: We bred mice with inducible, CM-specific expression of the Yamanaka factors, enabling adult CM reprogramming and dedifferentiation in vivo. RESULTS: Two days after induction, adult CMs presented a dedifferentiated phenotype and increased proliferation in vivo. Microarray analysis revealed that upregulation of ketogenesis was central to this process. Adeno-associated virus-driven HMGCS2 overexpression induced ketogenesis in adult CMs and recapitulated CM dedifferentiation and proliferation observed during partial reprogramming. This same phenomenon was found to occur after myocardial infarction, specifically in the border zone tissue, and HMGCS2 knockout mice showed impaired cardiac function and response to injury. Finally, we showed that exogenous HMGCS2 rescues cardiac function after ischemic injury. CONCLUSIONS: Our data demonstrate the importance of HMGCS2-induced ketogenesis as a means to regulate metabolic response to CM injury, thus allowing cell dedifferentiation and proliferation as a regenerative response.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Coração , Miocárdio/metabolismo , Camundongos Knockout , Regeneração/genética , Proliferação de Células , Mamíferos
8.
J Control Release ; 352: 879-892, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370875

RESUMO

Ischemic diseases including myocardial infarction (MI) and limb ischemia are some of the greatest causes of morbidity and mortality worldwide. Cell therapy is a potential treatment but is usually limited by poor survival and retention of donor cells injected at the target site. Since much of the therapeutic effects occur via cell-secreted paracrine factors, including extracellular vesicles (EVs), we developed a porous material for cell encapsulation which would improve donor cell retention and survival, while allowing EV secretion. Human donor cardiac mesenchymal cells were used as a model therapeutic cell and the encapsulation system could sustain three-dimensional cell growth and secretion of therapeutic factors. Secretion of EVs and protective growth factors were increased by encapsulation, and secreted EVs had hypoxia-protective, pro-angiogenic activities in in vitro assays. In a mouse model of limb ischemia the implant improved angiogenesis and blood flow, and in an MI model the system preserved ejection fraction %. In both instances, the encapsulation system greatly extended donor cell retention and survival compared to directly injected cells. This system represents a promising therapy for ischemic diseases and could be adapted for treatment of other diseases in the future.


Assuntos
Exossomos , Vesículas Extracelulares , Células-Tronco Mesenquimais , Infarto do Miocárdio , Animais , Camundongos , Humanos , Exossomos/metabolismo , Encapsulamento de Células , Porosidade , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Isquemia/terapia , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , Modelos Animais de Doenças
9.
Biomaterials ; 289: 121807, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36166894

RESUMO

We hypothesized that the host microbiome may influence foreign body responses following biomaterial implantation. To test this, we implanted a variety of clinically relevant biomaterials into germ-free or antibiotic-treated mice. Surprisingly, these mice displayed less fibrous tissue deposition, reduced host cell recruitment to the implant site, and differential expression of angiogenic and inflammatory markers. These observations were reversed upon fecal microbiome reconstitution, confirming a causal role of the host microbiome. In a clinically relevant disease model, microbiome-depleted mice cleared hyaluronic acid and bone marrow mononuclear cells from ischemic hind limb tissues more slowly, resulting in an improved therapeutic response. Findings were confirmed in pigs which showed reduced fibrotic responses to a variety of implanted materials. Lastly, we profiled changes in the host microbiome following material implantation, implicating several key bacteria phyla.


Assuntos
Materiais Biocompatíveis , Microbioma Gastrointestinal , Animais , Antibacterianos , Reação a Corpo Estranho , Ácido Hialurônico , Camundongos , Suínos
10.
Pharmaceutics ; 14(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35631516

RESUMO

Myocardial infarction is a major cause of morbidity and mortality worldwide. Due to poor inherent regeneration of the adult mammalian myocardium and challenges with effective drug delivery, there has been little progress in regenerative therapies. Nanocarriers, including liposomes, nanoparticles, and exosomes, offer many potential advantages for the therapy of myocardial infarction, including improved delivery, retention, and prolonged activity of therapeutics. However, there are many challenges that have prevented the widespread clinical use of these technologies. This review aims to summarize significant principles and developments in the field, with a focus on nanocarriers using ligand-based or cell mimicry-based targeting. Lastly, a discussion of limitations and potential future direction is provided.

11.
J Control Release ; 342: 31-43, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34896187

RESUMO

Breast cancer is the most common cancer among women and a leading cause of death worldwide. Triple negative breast cancer (TNBC) is a highly aggressive subtype which is the most challenging to treat. Due to heterogeneity and a lack of specific molecular targets, small molecule-based chemotherapy is the preferred course of treatment. However, these drugs have high toxicity due to off-target effects on healthy tissues, and tumors may develop resistance. Here, we present a polyethylene glycol-modified nanoscale liposomal formulation (LipoRV) of a new anthraquinone derivative which has potent effects on multiple TNBC cell lines. LipoRV readily inhibited the cell cycle, induced cell apoptosis, and reduced long-term proliferative potential of TNBC cells. In a xenograft animal model, LipoRV successfully cleared tumors and demonstrated a good safety profile, without detrimental effects on biochemical markers. Finally, RNA sequencing of LipoRV-treated TNBC cells was carried out, indicating that LipoRV may have immunomodulatory properties. These findings demonstrate that a liposomal anthraquinone-based molecule has excellent promise for TNBC therapy in the future.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Lipossomos/uso terapêutico , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Pharmaceutics ; 13(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34452156

RESUMO

Treatment of brain tumors is challenging since the blood-brain tumor barrier prevents chemotherapy drugs from reaching the tumor site in sufficient concentrations. Nanomedicines have great potential for therapy of brain disorders but are still uncommon in clinical use despite decades of research and development. Here, we provide an update on nano-carrier strategies for improving brain drug delivery for treatment of brain tumors, focusing on liposomes, extracellular vesicles and biomimetic strategies as the most clinically feasible strategies. Finally, we describe the obstacles in translation of these technologies including pre-clinical models, analytical methods and regulatory issues.

13.
Nutrients ; 12(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053656

RESUMO

The severe acute respiratory syndrome coronavirus (SARS-CoV)-2 disease (COVID)-19 is having profound effects on the global economy and food trade. Limited data are available on how this pandemic is affecting our dietary and lifestyle-related behaviors at the global level. Google Trends was used to obtain worldwide relative search volumes (RSVs) covering a timeframe from before the COVID-19 pandemic 1 June 2019 to 27 April 2020. Spearman's rank-order correlation coefficients were used to measure relationships between daily confirmed cases and aforementioned RSVs between 31 December 2019 and 15 April 2020. RSV curves showed increased interest in multiple keywords related to dietary and lifestyle behaviors during the COVID-19 lockdown period in March and April 2020. Spearman's correlation analysis showed that the strongest variables in each keyword category were (1) food security (food shortage: r = 0.749, food bank: r = 0.660, and free food: r = 0.555; all p < 0.001), (2) dietary behaviors (delivery: r = 0.780, restaurant: r = -0.731, take-away: r = 0.731, and food-delivery: r = 0.693; all p < 0.001), (3) outdoor-related behaviors (resort: r = -0.922, hotel: r = -0.913, cinema: r = -0.844, park: r = -0.827, fitness: r = -0.817, gym: r = -0.811; plant: r = 0.749, sunbathing: r = 0.668, and online: r = 0.670; all p < 0.001), and (4) immune-related nutrients/herbs/foods (vitamin C: r = 0.802, vitamin A: r = 0.780, zinc: r = 0.781, immune: r = 0.739, vitamin E: r = 0.707, garlic: r = 0.667, omega-3 fatty acid: r = -0.633, vitamin D: r = 0.549, and turmeric: r = 0.545; all p < 0.001). Restricted movement has affected peoples' dietary and lifestyle behaviors as people tend to search for immune-boosting nutrients/herbs and have replaced outdoor activities with sedentary indoor behaviors.


Assuntos
Infecções por Coronavirus , Dieta , Comportamento Alimentar , Abastecimento de Alimentos , Estilo de Vida , Pandemias , Pneumonia Viral , Isolamento Social , Betacoronavirus , COVID-19 , Coronavirus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Curcuma , Ácidos Graxos Ômega-3 , Alho , Comportamentos Relacionados com a Saúde , Humanos , Comportamento de Busca de Informação , Nutrientes , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Restaurantes , SARS-CoV-2 , Ferramenta de Busca , Comportamento Sedentário , Síndrome Respiratória Aguda Grave , Oligoelementos , Vitaminas
14.
ACS Nano ; 13(1): 97-113, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30532951

RESUMO

The blood-brain barrier (BBB) selectively controls the passage of endogenous and exogenous molecules between systemic circulation and the brain parenchyma. Nanocarrier-based drugs such as liposomes and nanoparticles are an attractive prospect for cancer therapy since they can carry a drug payload and be modified to improve targeting and retention at the desired site. However, the BBB prevents most therapeutic drugs from entering the brain, including physically restricting the passage of liposomes and nanoparticles. In this paper, we show that a low dose of systemically injected recombinant human vascular endothelial growth factor induces a short period of increased BBB permeability. We have shown increased delivery of a range of nanomedicines to the brain including contrast agents for imaging, varying sizes of nanoparticles, small molecule chemotherapeutics, tracer dyes, and liposomal chemotherapeutics. However, this effect was not uniform across all brain regions, and permeability varied depending on the drug or molecule measured. We have found that this window of BBB permeability effect is transient, with normal BBB integrity restored within 4 h. This strategy, combined with liposomal doxorubicin, was able to significantly extend survival in a mouse model of human glioblastoma. We have found no evidence of systemic toxicity, and the technique was replicated in pigs, demonstrating that this technique could be scaled up and potentially be translated to the clinic, thus allowing the use of nanocarrier-based therapies for brain disorders.


Assuntos
Antineoplásicos/farmacocinética , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Lipossomos/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Permeabilidade Capilar/efeitos dos fármacos , Meios de Contraste/farmacocinética , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Feminino , Corantes Fluorescentes/farmacocinética , Glioblastoma/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Camundongos SCID , Suínos , Fator A de Crescimento do Endotélio Vascular/administração & dosagem
15.
Theranostics ; 7(18): 4577-4590, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29158846

RESUMO

Rationale: Reducing cardiomyocyte death and enhancing their proliferation after myocardial infarction is perhaps the single largest challenge for cardiac tissue regeneration. Survivin (SVV) is the smallest member of the inhibitor of apoptosis (IAP) family but plays two important roles; inhibiting caspase-9 activation in the intrinsic apoptosis pathway, and regulating microtubule dynamics and chromosome segregation during cell division. Genetic depletion of cardiac SVV leads to incomplete cardiomyocyte division and abnormal heart development. However, the function of SVV in adult hearts after myocardial infarction remains unclear. Methods: A homozygous inducible cardiomyocyte-specific SVV knockout transgenic mouse model was established through crossbreeding SVVflox/flox and αMHC-MCM transgenic mice. Adult mice received consecutive intraperitoneal injection of tamoxifen to induce genetic removal of SVV in cardiomyocytes. A SVV overexpressing model was established via local delivery of SVV in wild-type mouse hearts. Results: We found that 30.82% of cardiomyocytes in the peri-infarct region of SVV knockout mice were apoptotic, significantly higher than the 22.18% in control mice. In addition, ejection fraction was 29.00±0.40% in knockout mice compared to 38.04±0.50% in control mice 21 days after myocardial infarction. On the contrary, locally overexpressing SVV in the heart improved cardiac functions. Unexpectedly, we found that altering the subcellular localization of SVV overexpression produced different outcomes. Overexpression of SVV in the cytoplasm decreased cardiomyocyte apoptosis, whereas overexpression of SVV in the nucleus enhanced cardiac regeneration. The ejection fraction of mice overexpressing SVV was 36.58±0.91%, significantly higher than 28.18±1.70% in the GFP control group. Apoptotic cardiomyocytes were only 4.63% in mouse overexpressing cytosolic SVV, compared to 9.31% in the GFP group, and activation of caspase-3 was also reduced. Moreover, mice overexpressing NLS-SVV exhibited a better ejection fraction (36.19±1.02%,) than GFP controls (26.69±0.75%). NLS-SVV enhanced H3P-positive cardiomyocytes in the border zone to 0.28%, compared to only 0.08% in GFP group, through interacting with Aurora B. Conclusions: We demonstrate the importance of SVV subcellular localization in regulating post-MI cardiac repair and regeneration. We hope that this will open new translational approaches through targeted delivery of SVV.


Assuntos
Proteínas Inibidoras de Apoptose/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Repressoras/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Modelos Animais de Doenças , Proteínas Inibidoras de Apoptose/genética , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Repressoras/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Survivina
16.
Sci Rep ; 7(1): 7372, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28785010

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder resulting from mutations in the dystrophin gene. The mdx/utrn -/- mouse, lacking in both dystrophin and its autosomal homologue utrophin, is commonly used to model the clinical symptoms of DMD. Interestingly, these mice are infertile but the mechanisms underlying this phenomenon remain unclear. Using dystrophin deficient mdx mouse and utrophin haplodeficient mdx/utrn +/- mouse models, we demonstrate the contribution of Dp427 (full-length dystrophin) and utrophin to testis and epididymis development, as well as spermatogenesis. We show that Dp427 deficiency disturbed the balance between proliferation and apoptosis of germ cells during spermatogenesis, which was further disrupted with utrophin haplodeficiency, deciphering a compensatory role of utrophin for dystrophin in the male reproductive system. In the spermatozoa, we have found a compensatory response of utrophin to dystrophin deficiency - namely the upregulation and relocation of utrophin to the flagellar midpiece. This study demonstrates the contribution of Dp427 and utrophin in male fertility, suggesting a potential pathology in DMD patients.


Assuntos
Distrofina/genética , Espermatogênese/genética , Utrofina/genética , Animais , Apoptose/genética , Movimento Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Expressão Gênica , Genótipo , Haploinsuficiência/genética , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Testículo/metabolismo
17.
Ann Transl Med ; 5(6): 143, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28462223

RESUMO

There is a growing need for in vitro models which can serve as platforms for drug screening and basic research. Human adult cardiomyocytes cannot be readily obtained or cultured, and so pluripotent stem cell-derived cardiomyocytes appear to be an attractive option. Unfortunately, these cells are structurally and functionally immature-more comparable to foetal cardiomyocytes than adult. A recent study by Ruan et al., provides new insights into accelerating the maturation process and takes us a step closer to solving the puzzle of pluripotent stem cell-derived cardiomyocyte maturation.

18.
EMBO Mol Med ; 9(2): 251-264, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28011860

RESUMO

Although remnant cardiomyocytes (CMs) possess a certain degree of proliferative ability, efficiency is too low for cardiac regeneration after injury. In this study, we identified a distinct stage within the initiation phase of CM reprogramming before the MET process, and microarray analysis revealed the strong up-regulation of several mitosis-related genes at this stage of reprogramming. Several candidate genes were selected and tested for their ability to induce CM proliferation. Delivering a cocktail of three genes, FoxM1, Id1, and Jnk3-shRNA (FIJs), induced CMs to re-enter the cell cycle and complete mitosis and cytokinesis in vitro More importantly, this gene cocktail increased CM proliferation in vivo and significantly improved cardiac function and reduced fibrosis after myocardial infarction. Collectively, our findings present a cocktail FIJs that may be useful in cardiac regeneration and also provide a practical strategy for probing reprogramming assays for regeneration of other tissues.


Assuntos
Proliferação de Células , Terapia Genética/métodos , Infarto do Miocárdio/terapia , Miócitos Cardíacos/fisiologia , Regeneração , Animais , Dependovirus/genética , Proteína Forkhead Box M1/genética , Vetores Genéticos , Proteína 1 Inibidora de Diferenciação/genética , Camundongos Endogâmicos C57BL , Proteína Quinase 10 Ativada por Mitógeno/genética , RNA Interferente Pequeno/genética , Medicina Regenerativa/métodos , Transdução Genética , Resultado do Tratamento
19.
Sci Transl Med ; 8(365): 365ra160, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27856799

RESUMO

Human clinical trials of protein therapy for ischemic diseases have shown disappointing outcomes so far, mainly because of the poor circulatory half-life of growth factors in circulation and their low uptake and retention by the targeted injury site. The attachment of polyethylene glycol (PEG) extends the circulatory half-lives of protein drugs but reduces their extravasation and retention at the target site. To address this issue, we have developed a drug capture system using a mixture of hyaluronic acid (HA) hydrogel and anti-PEG immunoglobulin M antibodies, which, when injected at a target body site, can capture and retain a variety of systemically injected PEGylated therapeutics at that site. Furthermore, repeated systemic injections permit "reloading" of the capture depot, allowing the use of complex multistage therapies. This study demonstrates this capture system in both murine and porcine models of critical limb ischemia. The results show that the reloadable HA/anti-PEG system has the potential to be clinically applied to patients with ischemic diseases, who require sequential administration of protein drugs for optimal outcomes.


Assuntos
Sistemas de Liberação de Medicamentos , Isquemia/tratamento farmacológico , Doenças Vasculares/terapia , Animais , Complemento C3/química , Extremidades/patologia , Humanos , Ácido Hialurônico/química , Hidrogéis/química , Imunoglobulina M/química , Isquemia/patologia , Camundongos , Camundongos Nus , Neovascularização Fisiológica , Polietilenoglicóis/química , Suínos
20.
Sci Rep ; 6: 25613, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161857

RESUMO

Nanoparticles represent an attractive option for systemic delivery of therapeutic compounds to the heart following myocardial infarction. However, it is well known that physicochemical properties of nanoparticles such as size, shape and surface modifications can vastly alter the distribution and uptake of injected nanoparticles. Therefore, we aimed to provide an examination of the rapid size-dependent uptake of fluorescent PEG-modified polystyrene nanoparticles administered immediately following cardiac ischaemia-reperfusion injury in mice. By assessing the biodistribution of nanoparticles with core diameters between 20 nm and 2 µm 30 minutes after their administration, we conclude that 20-200 nm diameter nanoparticles are optimal for passive targeting of the injured left ventricle.


Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Nanopartículas/metabolismo , Poliestirenos/farmacocinética , Animais , Sistemas de Liberação de Medicamentos/métodos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Masculino , Camundongos , Miocárdio/patologia , Nanopartículas/administração & dosagem , Nanopartículas/química , Tamanho da Partícula , Polietilenoglicóis/química , Poliestirenos/administração & dosagem , Poliestirenos/química , Reprodutibilidade dos Testes , Fatores de Tempo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA