Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105749, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354778

RESUMO

Protein engineering and screening of processive fungal cellobiohydrolases (CBHs) remain challenging due to limited expression hosts, synergy-dependency, and recalcitrant substrates. In particular, glycoside hydrolase family 7 (GH7) CBHs are critically important for the bioeconomy and typically difficult to engineer. Here, we target the discovery of highly active natural GH7 CBHs and engineering of variants with improved activity. Using experimentally assayed activities of genome mined CBHs, we applied sequence and structural alignments to top performers to identify key point mutations linked to improved activity. From ∼1500 known GH7 sequences, an evolutionarily diverse subset of 57 GH7 CBH genes was expressed in Trichoderma reesei and screened using a multiplexed activity screening assay. Ten catalytically enhanced natural variants were identified, produced, purified, and tested for efficacy using industrially relevant conditions and substrates. Three key amino acids in CBHs with performance comparable or superior to Penicillium funiculosum Cel7A were identified and combinatorially engineered into P. funiculosum cel7a, expressed in T. reesei, and assayed on lignocellulosic biomass. The top performer generated using this combined approach of natural diversity genome mining, experimental assays, and computational modeling produced a 41% increase in conversion extent over native P. funiculosum Cel7A, a 55% increase over the current industrial standard T. reesei Cel7A, and 10% improvement over Aspergillus oryzae Cel7C, the best natural GH7 CBH previously identified in our laboratory.


Assuntos
Celulose 1,4-beta-Celobiosidase , Ensaios Enzimáticos , Genoma Fúngico , Mutação , Engenharia de Proteínas , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/classificação , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Genoma Fúngico/genética , Engenharia de Proteínas/métodos , Especificidade por Substrato , Talaromyces/enzimologia , Talaromyces/genética , Trichoderma/enzimologia , Trichoderma/genética , Trichoderma/metabolismo , Biocatálise
2.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682749

RESUMO

Microbial conversion of biomass relies on a complex combination of enzyme systems promoting synergy to overcome biomass recalcitrance. Some thermophilic bacteria have been shown to exhibit particularly high levels of cellulolytic activity, making them of particular interest for biomass conversion. These bacteria use varying combinations of CAZymes that vary in complexity from a single catalytic domain to large multi-modular and multi-functional architectures to deconstruct biomass. Since the discovery of CelA from Caldicellulosiruptor bescii which was identified as one of the most active cellulase so far identified, the search for efficient multi-modular and multi-functional CAZymes has intensified. One of these candidates, GuxA (previously Acel_0615), was recently shown to exhibit synergy with other CAZymes in C. bescii, leading to a dramatic increase in growth on biomass when expressed in this host. GuxA is a multi-modular and multi-functional enzyme from Acidothermus cellulolyticus whose catalytic domains include a xylanase/endoglucanase GH12 and an exoglucanase GH6, representing a unique combination of these two glycoside hydrolase families in a single CAZyme. These attributes make GuxA of particular interest as a potential candidate for thermophilic industrial enzyme preparations. Here, we present a more complete characterization of GuxA to understand the mechanism of its activity and substrate specificity. In addition, we demonstrate that GuxA exhibits high levels of synergism with E1, a companion endoglucanase from A. cellulolyticus. We also present a crystal structure of one of the GuxA domains and dissect the structural features that might contribute to its thermotolerance.


Assuntos
Actinobacteria , Actinomycetales , Celulase , Biomassa , Celulase/química , Celulose/química , Humanos
3.
Proteins ; 89(12): 1647-1672, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34561912

RESUMO

The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas/química , Software , Sequência de Aminoácidos , Biologia Computacional , Microscopia Crioeletrônica , Cristalografia por Raios X , Análise de Sequência de Proteína
4.
Biotechnol Biofuels ; 13(1): 186, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33292448

RESUMO

BACKGROUND: Zymomonas mobilis has recently been shown to be capable of producing the valuable platform biochemical, 2,3-butanediol (2,3-BDO). Despite this capability, the production of high titers of 2,3-BDO is restricted by several physiological parameters. One such bottleneck involves the conversion of acetoin to 2,3-BDO, a step catalyzed by 2,3-butanediol dehydrogenase (Bdh). Several Bdh enzymes have been successfully expressed in Z. mobilis, although a highly active enzyme is yet to be identified for expression in this host. Here, we report the application of a phylogenetic approach to identify and characterize a superior Bdh, followed by validation of its structural attributes using a mutagenesis approach. RESULTS: Of the 11 distinct bdh genes that were expressed in Z. mobilis, crude extracts expressing Serratia marcescens Bdh (SmBdh) were found to have the highest activity (8.89 µmol/min/mg), when compared to other Bdh enzymes (0.34-2.87 µmol/min/mg). The SmBdh crystal structure was determined through crystallization with cofactor (NAD+) and substrate (acetoin) molecules bound in the active site. Active SmBdh was shown to be a tetramer with the active site populated by a Gln247 residue contributed by the diagonally opposite subunit. SmBdh showed a more extensive supporting hydrogen-bond network in comparison to the other well-studied Bdh enzymes, which enables improved substrate positioning and substrate specificity. This protein also contains a short α6 helix, which provides more efficient entry and exit of molecules from the active site, thereby contributing to enhanced substrate turnover. Extending the α6 helix to mimic the lower activity Enterobacter cloacae (EcBdh) enzyme resulted in reduction of SmBdh function to nearly 3% of the total activity. In great contrast, reduction of the corresponding α6 helix of the EcBdh to mimic the SmBdh structure resulted in ~ 70% increase in its activity. CONCLUSIONS: This study has demonstrated that SmBdh is superior to other Bdhs for expression in Z. mobilis for 2,3-BDO production. SmBdh possesses unique structural features that confer biochemical advantage to this protein. While coordinated active site formation is a unique structural characteristic of this tetrameric complex, the smaller α6 helix and extended hydrogen network contribute towards improved activity and substrate promiscuity of the enzyme.

5.
Methods Mol Biol ; 2096: 125-139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32720151

RESUMO

The metabolic enzymes like any enzymes generally display globular architecture where secondary structure elements and interactions between them preserve the spatial organization of the protein. A typical enzyme features a well-defined active site, designed for selective binding of the reaction substrate and facilitating a chemical reaction converting the substrate into a product. While many chemical reactions could be facilitated using only the functional groups that are found in proteins, the large percentage or intracellular reactions require use of cofactors, varying from single metal ions to relatively large molecules like numerous coenzymes, nucleotides and their derivatives, dinucleotides or hemes. Quite often these large cofactors become important not only for the catalytic function of the enzyme but also for the structural stability of it, as those are buried deep in the enzyme.


Assuntos
Cristalografia por Raios X/métodos , Enzimas/química , Oxirredutases do Álcool/química , Sítios de Ligação , Coenzimas/metabolismo , Cristalização , Klebsiella pneumoniae/enzimologia , Modelos Moleculares , NAD/metabolismo , Estereoisomerismo , Especificidade por Substrato
6.
Plant Cell ; 32(7): 2367-2382, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32354790

RESUMO

Xylans are a major component of plant cell walls. O-Acetyl moieties are the dominant backbone substituents of glucuronoxylan in dicots and play a major role in the polymer-polymer interactions that are crucial for wall architecture and normal plant development. Here, we describe the biochemical, structural, and mechanistic characterization of Arabidopsis (Arabidopsis thaliana) xylan O-acetyltransferase 1 (XOAT1), a member of the plant-specific Trichome Birefringence Like (TBL) family. Detailed characterization of XOAT1-catalyzed reactions by real-time NMR confirms that it exclusively catalyzes the 2-O-acetylation of xylan, followed by nonenzymatic acetyl migration to the O-3 position, resulting in products that are monoacetylated at both O-2 and O-3 positions. In addition, we report the crystal structure of the catalytic domain of XOAT1, which adopts a unique conformation that bears some similarities to the α/ß/α topology of members of the GDSL-like lipase/acylhydrolase family. Finally, we use a combination of biochemical analyses, mutagenesis, and molecular simulations to show that XOAT1 catalyzes xylan acetylation through formation of an acyl-enzyme intermediate, Ac-Ser-216, by a double displacement bi-bi mechanism involving a Ser-His-Asp catalytic triad and unconventionally uses an Arg residue in the formation of an oxyanion hole.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Polissacarídeos/metabolismo , Acetilação , Acetiltransferases/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arginina/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Proteínas de Membrana , Modelos Moleculares , Mutação , Conformação Proteica , Xilanos/metabolismo
8.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478233

RESUMO

Genomes of extremely thermophilic Caldicellulosiruptor species encode novel cellulose binding proteins, called tapirins, located proximate to the type IV pilus locus. The C-terminal domain of Caldicellulosiruptor kronotskyensis tapirin 0844 (Calkro_0844) is structurally unique and has a cellulose binding affinity akin to that seen with family 3 carbohydrate binding modules (CBM3s). Here, full-length and C-terminal versions of tapirins from Caldicellulosiruptor bescii (Athe_1870), Caldicellulosiruptor hydrothermalis (Calhy_0908), Caldicellulosiruptor kristjanssonii (Calkr_0826), and Caldicellulosiruptor naganoensis (NA10_0869) were produced recombinantly in Escherichia coli and compared to Calkro_0844. All five tapirins bound to microcrystalline cellulose, switchgrass, poplar, and filter paper but not to xylan. Densitometry analysis of bound protein fractions visualized by SDS-PAGE revealed that Calhy_0908 and Calkr_0826 (from weakly cellulolytic species) associated with the cellulose substrates to a greater extent than Athe_1870, Calkro_0844, and NA10_0869 (from strongly cellulolytic species). Perhaps this relates to their specific needs to capture glucans released from lignocellulose by cellulases produced in Caldicellulosiruptor communities. Calkro_0844 and NA10_0869 share a higher degree of amino acid sequence identity (>80% identity) with each other than either does with Athe_1870 (∼50%). The levels of amino acid sequence identity of Calhy_0908 and Calkr_0826 to Calkro_0844 were only 16% and 36%, respectively, although the three-dimensional structures of their C-terminal binding regions were closely related. Unlike the parent strain, C. bescii mutants lacking the tapirin genes did not bind to cellulose following short-term incubation, suggesting a role in cell association with plant biomass. Given the scarcity of carbohydrates in neutral terrestrial hot springs, tapirins likely help scavenge carbohydrates from lignocellulose to support growth and survival of Caldicellulosiruptor species.IMPORTANCE The mechanisms by which microorganisms attach to and degrade lignocellulose are important to understand if effective approaches for conversion of plant biomass into fuels and chemicals are to be developed. Caldicellulosiruptor species grow on carbohydrates from lignocellulose at elevated temperatures and have biotechnological significance for that reason. Novel cellulose binding proteins, called tapirins, are involved in the way that Caldicellulosiruptor species interact with microcrystalline cellulose, and additional information about the diversity of these proteins across the genus, including binding affinity and three-dimensional structural comparisons, is provided here.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Celulose/metabolismo , Firmicutes/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Celulose/química , Firmicutes/química , Firmicutes/genética , Genoma Bacteriano , Fontes Termais/microbiologia , Temperatura Alta , Domínios Proteicos
9.
Biotechnol Biofuels ; 11: 189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002729

RESUMO

BACKGROUND: Strategies for maximizing the microbial production of bio-based chemicals and fuels include eliminating branched points to streamline metabolic pathways. While this is often achieved by removing key enzymes, the introduction of nonnative enzymes can provide metabolic shortcuts, bypassing branched points to decrease the production of undesired side-products. Pyruvate decarboxylase (PDC) can provide such a shortcut in industrially promising thermophilic organisms; yet to date, this enzyme has not been found in any thermophilic organism. Incorporating nonnative enzymes into host organisms can be challenging in cases such as this, where the enzyme has evolved in a very different environment from that of the host. RESULTS: In this study, we use computational protein design to engineer the Zymomonas mobilis PDC to resist thermal denaturation at the growth temperature of a thermophilic host. We generate thirteen PDC variants using the Rosetta protein design software. We measure thermal stability of the wild-type PDC and PDC variants using circular dichroism. We then measure and compare enzyme endurance for wild-type PDC with the PDC variants at an elevated temperature of 60 °C (thermal endurance) using differential interference contrast imaging. CONCLUSIONS: We find that increases in melting temperature (Tm) do not directly correlate with increases in thermal endurance at 60 °C. We also do not find evidence that any individual mutation or design approach is the major contributor to the most thermostable PDC variant. Rather, remarkable cooperativity among sixteen thermostabilizing mutations is key to rationally designing a PDC with significantly enhanced thermal endurance. These results suggest a generalizable iterative computational protein design approach to improve thermal stability and endurance of target enzymes.

10.
Nat Commun ; 9(1): 1186, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29567941

RESUMO

Glycoside Hydrolase Family 7 cellobiohydrolases (GH7 CBHs) catalyze cellulose depolymerization in cellulolytic eukaryotes, making them key discovery and engineering targets. However, there remains a lack of robust structure-activity relationships for these industrially important cellulases. Here, we compare CBHs from Trichoderma reesei (TrCel7A) and Penicillium funiculosum (PfCel7A), which exhibit a multi-modular architecture consisting of catalytic domain (CD), carbohydrate-binding module, and linker. We show that PfCel7A exhibits 60% greater performance on biomass than TrCel7A. To understand the contribution of each domain to this improvement, we measure enzymatic activity for a library of CBH chimeras with swapped subdomains, demonstrating that the enhancement is mainly caused by PfCel7A CD. We solve the crystal structure of PfCel7A CD and use this information to create a second library of TrCel7A CD mutants, identifying a TrCel7A double mutant with near-equivalent activity to wild-type PfCel7A. Overall, these results reveal CBH regions that enable targeted activity improvements.


Assuntos
Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Penicillium/enzimologia , Trichoderma/enzimologia , Domínio Catalítico , Celulose 1,4-beta-Celobiosidase/química , Proteínas Fúngicas/química , Cinética , Simulação de Dinâmica Molecular , Penicillium/química , Penicillium/genética , Conformação Proteica , Engenharia de Proteínas , Trichoderma/química , Trichoderma/genética
11.
Biotechnol Biofuels ; 10: 243, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213309

RESUMO

BACKGROUND: Auxiliary activity (AA) enzymes are produced by numerous bacterial and fungal species to assist in the degradation of biomass. These enzymes are abundant but have yet to be fully characterized. Here, we report the X-ray structure of Thermobifida fusca AA10A (TfAA10A), investigate mutational characterization of key surface residues near its active site, and explore the importance of the various domains of Thermobifida fusca AA10B (TfAA10B). The structure of TfAA10A is similar to other bacterial LPMOs (lytic polysaccharide monooxygenases), including signs of photo-reduction and a distorted active site, with mixed features showing both type I and II copper coordination. The point mutation experiments of TfAA10A show that Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for the binding of substrate, but that the X1 module does not affect binding or activity. RESULTS: In TfAA10A, Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for substrate binding, but that the X1 module does not affect binding or activity. The structure of TfAA10A is similar to other bacterial lytic polysaccharide monooxygenases with mixed features showing both type I and II copper coordination. CONCLUSIONS: The role of LPMOs and the variability of abundance in genomes are not fully explored. LPMOs likely perform initial attacks into crystalline cellulose to allow larger processive cellulases to bind and attack, but the precise nature of their synergistic behavior remains to be definitively characterized.

12.
Biotechnol Biofuels ; 10: 274, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213319

RESUMO

Glycoside hydrolase (GH) family 48 is an understudied and increasingly important exoglucanase family found in the majority of bacterial cellulase systems. Moreover, many thermophilic enzyme systems contain GH48 enzymes. Deletion of GH48 enzymes in these microorganisms results in drastic reduction in biomass deconstruction. Surprisingly, given their importance for these microorganisms, GH48s have intrinsically low cellulolytic activity but even in low ratios synergize greatly with GH9 endoglucanases. In this study, we explore the structural and enzymatic diversity of these enzymes across a wide range of temperature optima. We have crystallized one new GH48 module from Bacillus pumilus in a complex with cellobiose and cellohexaose (BpumGH48). We compare this structure to other known GH48 enzymes in an attempt to understand GH48 structure/function relationships and draw general rules correlating amino acid sequences and secondary structures to thermostability in this GH family.

13.
Plant J ; 91(6): 931-949, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28670741

RESUMO

The mechanistic underpinnings of the complex process of plant polysaccharide biosynthesis are poorly understood, largely because of the resistance of glycosyltransferase (GT) enzymes to structural characterization. In Arabidopsis thaliana, a glycosyl transferase family 37 (GT37) fucosyltransferase 1 (AtFUT1) catalyzes the regiospecific transfer of terminal 1,2-fucosyl residues to xyloglucan side chains - a key step in the biosynthesis of fucosylated sidechains of galactoxyloglucan. We unravel the mechanistic basis for fucosylation by AtFUT1 with a multipronged approach involving protein expression, X-ray crystallography, mutagenesis experiments and molecular simulations. Mammalian cell culture expressions enable the sufficient production of the enzyme for X-ray crystallography, which reveals the structural architecture of AtFUT1 in complex with bound donor and acceptor substrate analogs. The lack of an appropriately positioned active site residue as a catalytic base leads us to propose an atypical water-mediated fucosylation mechanism facilitated by an H-bonded network, which is corroborated by mutagenesis experiments as well as detailed atomistic simulations.


Assuntos
Arabidopsis/enzimologia , Fucosiltransferases/química , Glucanos/química , Modelos Estruturais , Xilanos/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografia por Raios X , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Glicosilação , Simulação de Dinâmica Molecular , Mutagênese , Água/metabolismo , Galactosídeo 2-alfa-L-Fucosiltransferase
14.
Sci Rep ; 7(1): 4389, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28663545

RESUMO

In planta expression of a thermophilic endoglucanase (AcCel5A) reduces recalcitrance by creating voids and other irregularities in cell walls of Arabidopsis thaliana that increase enzyme accessibility without negative impacts on plant growth or cell wall composition. Our results suggest that cellulose ß-1-4 linkages can be cut sparingly in the assembling wall and that these minimal changes, made at the proper time, have an impact on plant cell wall recalcitrance without negative effects on overall plant development.


Assuntos
Biomassa , Parede Celular/metabolismo , Celulase/genética , Plantas/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Celulase/química , Celulase/metabolismo , Celulose/metabolismo , Ordem dos Genes , Modelos Moleculares , Plantas/enzimologia , Plasmídeos/genética , Conformação Proteica , Relação Estrutura-Atividade
15.
Photosynth Res ; 128(1): 45-57, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26526668

RESUMO

The green alga Chlamydomonas reinhardtii contains six plastidic [2Fe2S]-cluster ferredoxins (FDXs), with FDX1 as the predominant isoform under photoautotrophic growth. FDX2 is highly similar to FDX1 and has been shown to interact with specific enzymes (such as nitrite reductase), as well as to share interactors with FDX1, such as the hydrogenases (HYDA), ferredoxin:NAD(P) reductase I (FNR1), and pyruvate:ferredoxin oxidoreductase (PFR1), albeit performing at low catalytic rates. Here we report the FDX2 crystal structure solved at 1.18 Å resolution. Based on differences between the Chlorella fusca FDX1 and C. reinhardtii FDX2 structures, we generated and purified point-mutated versions of the FDX2 protein and assayed them in vitro for their ability to catalyze hydrogen and NADPH photo-production. The data show that structural differences at two amino acid positions contribute to functional differences between FDX1 and FDX2, suggesting that FDX2 might have evolved from FDX1 toward a different physiological role in the cell. Moreover, we demonstrate that the mutations affect both the midpoint potentials of the FDX and kinetics of the FNR reaction, possibly due to altered binding between FDX and FNR. An effect on H2 photo-production rates was also observed, although the kinetics of the reaction were not further characterized.


Assuntos
Chlamydomonas reinhardtii/química , Ferredoxinas/química , Ferredoxinas/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/genética , Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/genética , Hidrogênio/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , NADP/metabolismo , Oxirredução , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
16.
Proteins ; 84(3): 295-304, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26572060

RESUMO

Family 48 cellobiohydrolases are some of the most abundant glycoside hydrolases in nature. They are able to degrade cellulosic biomass and therefore serve as good enzyme candidates for biofuel production. Family 48 cellulases hydrolyze cellulose chains via a processive mechanism, and produce end products composed primarily of cellobiose as well as other cellooligomers (dp ≤ 4). The challenge of utilizing cellulases in biofuel production lies in their extremely slow turnover rate. A factor contributing to the low enzyme activity is suggested to be product binding to enzyme and the resulting performance inhibition. In this study, we quantitatively evaluated the product inhibitory effect of four family 48 glycoside hydrolases using molecular dynamics simulations and product expulsion free-energy calculations. We also suggested a series of single mutants of the four family 48 glycoside hydrolases with theoretically reduced level of product inhibition. The theoretical calculations provide a guide for future experimental studies designed to produce mutant cellulases with enhanced activity.


Assuntos
Proteínas de Bactérias/química , Glicosídeo Hidrolases/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Inibidores Enzimáticos/química , Glicosídeo Hidrolases/genética , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína , Termodinâmica
17.
J Biol Chem ; 290(17): 10645-56, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25720489

RESUMO

A variety of catalytic and noncatalytic protein domains are deployed by select microorganisms to deconstruct lignocellulose. These extracellular proteins are used to attach to, modify, and hydrolyze the complex polysaccharides present in plant cell walls. Cellulolytic enzymes, often containing carbohydrate-binding modules, are key to this process; however, these enzymes are not solely responsible for attachment. Few mechanisms of attachment have been discovered among bacteria that do not form large polypeptide structures, called cellulosomes, to deconstruct biomass. In this study, bioinformatics and proteomics analyses identified unique, discrete, hypothetical proteins ("tapirins," origin from Maori: to join), not directly associated with cellulases, that mediate attachment to cellulose by species in the noncellulosomal, extremely thermophilic bacterial genus Caldicellulosiruptor. Two tapirin genes are located directly downstream of a type IV pilus operon in strongly cellulolytic members of the genus, whereas homologs are absent from the weakly cellulolytic Caldicellulosiruptor species. Based on their amino acid sequence, tapirins are specific to these extreme thermophiles. Tapirins are also unusual in that they share no detectable protein domain signatures with known polysaccharide-binding proteins. Adsorption isotherm and trans vivo analyses demonstrated the carbohydrate-binding module-like affinity of the tapirins for cellulose. Crystallization of a cellulose-binding truncation from one tapirin indicated that these proteins form a long ß-helix core with a shielded hydrophobic face. Furthermore, they are structurally unique and define a new class of polysaccharide adhesins. Strongly cellulolytic Caldicellulosiruptor species employ tapirins to complement substrate-binding proteins from the ATP-binding cassette transporters and multidomain extracellular and S-layer-associated glycoside hydrolases to process the carbohydrate content of lignocellulose.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Celulose/metabolismo , Adsorção , Bactérias/genética , Bactérias/ultraestrutura , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/genética , Sítios de Ligação , Fímbrias Bacterianas/metabolismo , Genes Bacterianos , Modelos Moleculares , Filogenia , Plantas/microbiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Science ; 344(6184): 578, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24812382

RESUMO

Gusakov critiques our methodology for comparing the cellulolytic activity of the bacterial cellulase CelA with the fungal cellulase Cel7A. We address his concerns by clarifying some misconceptions, carefully referencing the literature, and justifying our approach to point out that the results from our study still stand.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Celulase/química , Celulose/química
19.
Biotechnol Bioeng ; 111(4): 664-73, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24264519

RESUMO

Lignocellulosic biomass is a potential source of sustainable transportation fuels, but efficient enzymatic saccharification of cellulose is a key challenge in its utilization. Cellulases from the glycoside hydrolase (GH) family 48 constitute an important component of bacterial biomass degrading systems and structures of three enzymes from this family have been previously published. We report a new crystal structure of TfCel48A, a reducing end directed exocellulase from Thermobifida fusca, which shows that this enzyme shares important structural features with the other members of the GH48 family. The active site tunnel entrance of the known GH48 exocellulases is enriched in aromatic residues, which are known to interact well with anhydroglucose units of cellulose. We carried out site-directed mutagenesis studies of these aromatic residues (Y97, F195, Y213, and W313) along with two non-aromatic residues (N212 and S311) also located around the tunnel entrance and a W315 residue inside the active site tunnel. Only the aromatic residues located around the tunnel entrance appear to be important for the ability of TfCel48A to access individual cellulose chains on bacterial cellulose (BC), a crystalline substrate. Both Trp residues were found to be important for the processivity of TfCel48A on BC and phosphoric acid swollen cellulose (PASC), but only W313 appears to play a role in the ability of the enzyme to access individual cellulose chains in BC. When acting on BC, reduced processivity was found to correlate with reduced enzyme activity. The reverse, however, is true when PASC is the substrate. Presumably, higher density of available cellulose chain ends and the amorphous nature of PASC explain the increased initial activity of mutants with lower processivity.


Assuntos
Actinomycetales/enzimologia , Proteínas de Bactérias/química , Celulases/química , Actinomycetales/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Celulases/genética , Celulases/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica
20.
Science ; 342(6165): 1513-6, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24357319

RESUMO

Most fungi and bacteria degrade plant cell walls by secreting free, complementary enzymes that hydrolyze cellulose; however, some bacteria use large enzymatic assemblies called cellulosomes, which recruit complementary enzymes to protein scaffolds. The thermophilic bacterium Caldicellulosiruptor bescii uses an intermediate strategy, secreting many free cellulases that contain multiple catalytic domains. One of these, CelA, comprises a glycoside hydrolase family 9 and a family 48 catalytic domain, as well as three type III cellulose-binding modules. In the saccharification of a common cellulose standard, Avicel, CelA outperforms mixtures of commercially relevant exo- and endoglucanases. From transmission electron microscopy studies of cellulose after incubation with CelA, we report morphological features that suggest that CelA not only exploits the common surface ablation mechanism driven by general cellulase processivity, but also excavates extensive cavities into the surface of the substrate. These results suggest that nature's repertoire of cellulose digestion paradigms remain only partially discovered and understood.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Celulase/química , Celulose/química , Proteínas de Bactérias/isolamento & purificação , Catálise , Domínio Catalítico , Celulase/isolamento & purificação , Temperatura Alta , Hidrólise , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA