Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207833

RESUMO

The Compact Muon Solenoid (CMS) is a particle physics experiment situated on the Large Hadron Collider (LHC) at CERN, Switzerland. The CMS upgrade (planned for 2025) involves installing a new advanced sensor system within the CMS tracker, the centre of the detector closest to the particle collisions. The increased heat load associated with these sensors has required the design of an enhanced cooling system that exploits the latent heat of 40 bar CO2. In order to minimise interaction with the incident radiation and improve the detector performance, the cooling pipes within this system need to be thin-walled (~100 µm) and strong enough to withstand these pressures. The purpose of this paper is to analyse the microstructure and mechanical properties of thin-walled cooling pipes currently in use in existing detectors to assess their potential for the tracker upgrade. In total, 22 different pipes were examined, which were composed of CuNi, SS316L, and Ti and were coated with Ni, Cu, and Au. The samples were characterised using computer tomography for 3D structural assessment, focused ion beam ring-core milling for microscale residual stress analysis, optical profilometry for surface roughness, optical microscopy for grain size analysis, and energy dispersive X-ray spectroscopy for elemental analysis. Overall, this examination demonstrated that the Ni- and Cu-coated SS316L tubing was optimal due to a combination of low residual stress (20 MPa axial and 5 MPa hoop absolute), low coating roughness (0.4 µm Ra), minimal elemental diffusion, and a small void fraction (1.4%). This result offers a crucial starting point for the ongoing thin-walled pipe selection, development, and pipe-joining research required for the CMS tracker upgrade, as well as the widespread use of CO2 cooling systems in general.

2.
Polymers (Basel) ; 12(11)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171935

RESUMO

Porous ultra-high molecular weight polyethylene (UHMWPE) is a high-performance bioinert polymer used in cranio-facial reconstructive surgery in procedures where relatively low mechanical stresses arise. As an alternative to much stiffer and more costly polyether-ether-ketone (PEEK) polymer, UHMWPE is finding further wide applications in hierarchically structured hybrids for advanced implants mimicking cartilage, cortical and trabecular bone tissues within a single component. The mechanical behaviour of open-cell UHMWPE sponges obtained through sacrificial desalination of hot compression-moulded UHMWPE-NaCl powder mixtures shows a complex dependence on the fabrication parameters and microstructural features. In particular, similarly to other porous media, it displays significant inhomogeneity of strain that readily localises within deformation bands that govern the overall response. In this article, we report advances in the development of accurate experimental techniques for operando studies of the structure-performance relationship applied to the porous UHMWPE medium with pore sizes of about 250 µm that are most well-suited for live cell proliferation and fast vascularization of implants. Samples of UHMWPE sponges were subjected to in situ compression using a micromechanical testing device within Scanning Electron Microscope (SEM) chamber, allowing the acquisition of high-resolution image sequences for Digital Image Correlation (DIC) analysis. Special masking and image processing algorithms were developed and applied to reveal the evolution of pore size and aspect ratio. Key structural evolution and deformation localisation phenomena were identified at both macro- and micro-structural levels in the elastic and plastic regimes. The motion of pore walls was quantitatively described, and the presence and influence of strain localisation zones were revealed and analysed using DIC technique.

3.
Mater Des ; 192: 108749, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32341616

RESUMO

Quarantine conditions arising as a result of the coronavirus (COVID-19) have had a significant impact on global production-rates and supply chains. This has coincided with increased demands for medical and personal protective equipment such as face shields. Shortages have been particularly prevalent in western countries which typically rely upon global supply chains to obtain these types of device from low-cost economies. National calls for the repurposing of domestic mass-production facilities have the potential to meet medical requirements in coming weeks, however the immediate demand associated with the virus has led to the mobilisation of a diverse distributed workforce. Selection of appropriate manufacturing processes and underused supply chains is paramount to the success of these operations. A simplified medical face shield design is presented which repurposes an assortment of existing alternative supply chains. The device is easy to produce with minimal equipment and training. It is hoped that the methodology and approach presented is of use to the wider community at this critical time.

4.
Dent Mater ; 35(2): 257-269, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30502963

RESUMO

OBJECTIVE: Residually strained porcelain is influential in the early onset of failure in Yttria Partially Stabilised Zirconia (YPSZ) - porcelain dental prosthesis. In order to improve current understanding it is necessary to increase the spatial resolution of residual strain analysis in these veneers. METHODS: Few techniques exist which can resolve residual stress in amorphous materials at the microscale resolution required. For this reason, recent developments in Pair Distribution Function (PDF) analysis of X-ray diffraction data of dental porcelain have been exploited. This approach has facilitated high-resolution (70µm) quantification of residual strain in a YPSZ-porcelain dental prosthesis. In order to cross-validate this technique, the sequential ring-core focused ion beam and digital image correlation approach was implemented at a step size of 50µm. This semi-destructive technique exploits microscale strain relief to provide quantitative estimates of the near-surface residual strain. RESULTS: The two techniques were found to show highly comparable results. The residual strain within the veneer was found to be primarily tensile, with the highest magnitude stresses located at the YPSZ-porcelain interface where failure is known to originate. Oscillatory tensile and compressive stresses were also found in a direction parallel to the interface, likely to be induced by the multiple layering used during fabrication. SIGNIFICANCE: This study provides the insights required to improve prosthesis modelling, to develop new processing routes that minimise residual stress and ultimately to reduce prosthesis failure rates. The PDF approach also offers a powerful new technique for microscale strain quantification in amorphous materials.


Assuntos
Porcelana Dentária , Facetas Dentárias , Análise do Estresse Dentário , Teste de Materiais , Estresse Mecânico , Propriedades de Superfície , Ítrio , Zircônio
5.
Materials (Basel) ; 11(3)2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543728

RESUMO

High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the 'caking' (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional 'caking' with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation.

6.
Sci Rep ; 8(1): 1574, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371622

RESUMO

Strain is a crucial measure of materials deformation for evaluating and predicting the mechanical response, strength, and fracture. The spatial resolution attainable by the modern real and reciprocal space techniques continues to improve, alongside the ability to carry out atomistic simulations. This is offering new insights into the very concept of strain. In crystalline materials, the presence of well-defined, stable atomic planes allows defining strain as the relative change in the interplanar spacing. However, the presence of disorder, e.g. locally around defects such as dislocation cores, and particularly the pervasive atomic disorder in amorphous materials challenge existing paradigms: disorder prevents a reference configuration being defined, and allows strain to be accommodated in a different manner to crystalline materials. As an illustration, using experimental pair distribution function analysis in combination with Molecular Dynamic (MD) simulations, we highlight the importance of bond angle change vs bond stretching for strain accommodation in amorphous systems.

7.
Acta Biomater ; 32: 256-263, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26779888

RESUMO

Human dental tissue is a hydrated biological mineral composite. In terms of volume and mass, a human tooth mainly consists of dentine and enamel. Human dental tissues have a hierarchical structure and versatile mechanical properties. The dentine enamel junction (DEJ) is an important biological interface that provides a durable bond between enamel and dentine that is a life-long success story: while intact and free from disease, this interface does not fail despite the harsh thermo-mechanical loading in the oral cavity. The underlying reasons for such remarkable strength and durability are still not fully clear from the structural and mechanical perspectives. One possibility is that, in an example of residual stress engineering, evolution has led to the formation of a layer of inelastic strain adjacent to the DEJ during odontogenesis (tooth formation). However, due to significant experimental and interpretational challenges, no meaningful quantification of residual stress in the vicinity of the DEJ at the appropriate spatial resolution has been reported to date. In this study, we applied a recently developed flexible and versatile method for measuring the residual elastic strain at (sub)micron-scale utilising focused ion beam (FIB) milling with digital image correlation (DIC). We report the results that span the transition from human dentine to enamel, and incorporate the material lying at and in the vicinity of the DEJ. The capability of observing the association between internal architecture and the residual elastic strain state at the micrometre scale is useful for understanding the remarkable performance of the DEJ and may help the creation of improved biomimetic materials for clinical and engineering applications. STATEMENT OF SIGNIFICANCE: We studied the micron-scale residual stresses that exist within human teeth, between enamel (outer tooth shell, hardest substance in the human body) and dentine (soft bone-like vascularised tooth core). The dentine-enamel junction (DEJ) is an extremely interesting example of nature's design in terms of hierarchical structuring and residual stress management. Key developments reported are systematic focused ion beam (FIB) milling and digital image correlation (DIC) micrometre scale residual strain evaluation, and the determination of principal strain direction near DEJ, correlated with internal architecture responsible for remarkable strength. This work helps understanding DEJ performance and improving biomimetic materials design for clinical and engineering applications.


Assuntos
Esmalte Dentário/fisiologia , Dentina/fisiologia , Estresse Mecânico , Elasticidade , Humanos , Processamento de Imagem Assistida por Computador , Íons
8.
J R Soc Interface ; 11(95): 20130928, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24718447

RESUMO

Human dental tissues consist of inorganic constituents (mainly crystallites of hydroxyapatite, HAp) and organic matrix. In addition, synthetic HAp powders are frequently used in medical and chemical applications. Insights into the ultrastructural alterations of skeletal hard tissues exposed to thermal treatment are crucial for the estimation of temperature of exposure in forensic and archaeological studies. However, at present, only limited data exist on the heat-induced structural alterations of human dental tissues. In this paper, advanced non-destructive small- and wide angle X-ray scattering (SAXS/WAXS) synchrotron techniques were used to investigate the in situ ultrastructural alterations in thermally treated human dental tissues and synthetic HAp powders. The crystallographic properties were probed by WAXS, whereas HAp grain size distribution changes were evaluated by SAXS. The results demonstrate the important role of the organic matrix that binds together the HAp crystallites in responding to heat exposure. This is highlighted by the difference in the thermal behaviour between human dental tissues and synthetic HAp powders. The X-ray analysis results are supported by thermogravimetric analysis. The results concerning the HAp crystalline architecture in natural and synthetic HAp powders provide a reliable basis for deducing the heating history for dental tissues in the forensic and archaeological context, and the foundation for further development and optimization of biomimetic material design.


Assuntos
Materiais Biomiméticos/química , Durapatita/química , Temperatura Alta , Espalhamento de Radiação , Dente/química , Feminino , Humanos , Masculino
9.
Acta Biomater ; 10(1): 343-54, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24121194

RESUMO

Human enamel is a typical hierarchical mineralized tissue with a two-level composite structure. To date, few studies have focused on how the mechanical behaviour of this tissue is affected by both the rod orientation at the microscale and the preferred orientation of mineral crystallites at the nanoscale. In this study, wide-angle X-ray scattering was used to determine the internal lattice strain response of human enamel samples (with differing rod directions) as a function of in situ uniaxial compressive loading. Quantitative stress distribution evaluation in the birefringent mounting epoxy was performed in parallel using photoelastic techniques. The resulting experimental data was analysed using an advanced multiscale Eshelby inclusion model that takes into account the two-level hierarchical structure of human enamel, and reflects the differing rod directions and orientation distributions of hydroxyapatite crystals. The achieved satisfactory agreement between the model and the experimental data, in terms of the values of multidirectional strain components under the action of differently orientated loads, suggests that the multiscale approach captures reasonably successfully the structure-property relationship between the hierarchical architecture of human enamel and its response to the applied forces. This novel and systematic approach can be used to improve the interpretation of the mechanical properties of enamel, as well as of the textured hierarchical biomaterials in general.


Assuntos
Esmalte Dentário/química , Esmalte Dentário/efeitos da radiação , Elasticidade/efeitos da radiação , Luz , Modelos Teóricos , Estresse Mecânico , Difração de Raios X , Fenômenos Biomecânicos/efeitos da radiação , Força Compressiva/efeitos da radiação , Simulação por Computador , Durapatita/química , Análise de Elementos Finitos , Humanos , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA