Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 208: 111297, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513476

RESUMO

Proton therapy has emerged as an advantageous modality for tumor radiotherapy due to its favorable physical and biological properties. However, this therapy generates induced radioactivity through nuclear reactions between the primary beam, secondary particles, and surrounding materials. This study focuses on systematically investigating the induced radioactivity in the gantry room during pencil beam scanning, utilizing both experimental measurements and Monte Carlo simulations. Results indicate that patients are the primary source of induced radioactivity, predominantly producing radionuclides such as 11C, 13N, and 15O. Long-term irradiation primarily generates radionuclides like 22Na, 24Na, and 54Mn etc. Additionally, this study estimates the individual doses received by medical workers in the gantry room, the irradiation dose for patient escorts, and the additional dose to patients from residual radiation. Finally, the study offers recommendations to minimize unnecessary irradiation doses to medical workers, patient escorts, and patients.


Assuntos
Terapia com Prótons , Radioatividade , Humanos , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Radioisótopos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos
2.
Appl Radiat Isot ; 188: 110350, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35816888

RESUMO

Carbon ions have become the most widely used particles in heavy-ion tumor therapy due to favorable physical and biological characteristics. The beam delivery system (BDS) and tumor tissues are directly bombarded with accelerated carbon ions, resulting in activation products in the components and the patient's body. The results of an experimental study and a Monte-Carlo simulation for the radioactivity induced in a treatment room under a uniform scanning mode were presented in this study. They indicated that the multi-leaf collimator (MLC) and the patient's body were the main sources of induced radioactivity. The half-lives of the main produced radionuclides ranged from a few minutes to tens of minutes for single irradiation and from dozens of days to hundreds of days for long-term irradiation. The personal dose of medical staff working in the treatment room and the additional dose of the patient from the induced radioactivity were estimated. Finally, some suggestions were made to reduce the unwanted radiation exposure of the medical staff, patients, and carers.


Assuntos
Radioterapia com Íons Pesados , Neoplasias , Carbono/uso terapêutico , Humanos , Íons , Método de Monte Carlo , Neoplasias/tratamento farmacológico , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA