Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16320, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009811

RESUMO

Co-combustion is a technology that enables the simultaneous and efficient utilization of biomass and coal gangue (CG). Nevertheless, the factors that affect the combustibility of co-pyrolytic char, which represents the rate-determining step of the entire co-combustion process, remain unclear. This study investigates the impact of the physicochemical properties of co-pyrolytic char, including pore structure, carbon structure, and alkali metals, on the combustion characteristics. The TGA analysis indicates that the ignition and burnout temperatures of the co-pyrolytic char increase as the CG mixing ratio increases, resulting in a prolonged combustion. This is due to the fact that the carbon structure of the co-pyrolytic char becomes increasingly aromatic, accompanied by a reduction in aliphatic hydrocarbons and oxygen-containing groups as the CG mixing ratio increases. Furthermore, the high ash content of the CG is another significant factor contributing to the observed reduction in combustibility. The reaction between mullite, quartz in CG, and alkali metals in biomass results in the formation of aluminosilicate, which reduces the catalytic ability of alkali metals. Furthermore, the char combustion kinetics are analyzed by the KAS method, and the results indicate that the introduction of CG increases the activation energy of the entire char combustion process. The activation energy of the 80RS20CG is within the range of 102.22-164.99 kJ/mol, while the RS char is within the range of 89.87-144.67 kJ/mol.

2.
Infect Drug Resist ; 16: 7227-7237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023408

RESUMO

Background: Ceftazidime-avibactam (CAZ-AVI) is a new cephalosporin/ß-lactamase inhibitor combination that received clinical approval in China in 2019. This study aims to investigate the efficacy and safety of CAZ-AVI in the treatment of Klebsiella pneumoniae (KP) infection in a hospital, and differences in efficacy among various infection sites and between monotherapy and combination therapy, providing valuable insights for its further application. Methods: Patients who used CAZ-AVI between January 2019 and April 2023 were identified through the hospital information system. Demographic information, details of the infection site, KP strain's drug sensitivity report, treatment duration, combination therapies, adverse drug reactions (ADR), and 28-day survival were recorded. Clinical and microbiological efficacies were analyzed using SPSS 23.0 software to compare different infection sites and combination therapies. Results: The overall effective clinical response (CR) rate of CAZ-AVI against KP infection was 62.13%, with a favorable microbial response (MR) rate was 65.68% and a 28-day survival rate was 63.91%. No significant difference occurred in effective CR and 28-day survival rate among different infection sites (P = 0.709 and 0.862, respectively). The favorable MR rate for abdominal infections was slightly lower than that for other sites of infection (P = 0.021). No significant differences in effective CR, favorable MR, and 28-day survival between monotherapy and combination therapy were present (P values were 0.649, 0.123, and 0.280, respectively). The incidence of ADR was 1.78%, including increased creatinine, elevated transaminase, hematuria, and thrombocytopenia. Conclusion: CAZ-AVI demonstrates good clinical efficacy and safety in the treatment of KP infections. The clinical efficacy of CAZ-AVI was similar across different infection sites, and combination therapy did not show an advantage over monotherapy. Further studies are warranted. It should be noted that CAZ-AVI may induce thrombocytopenia and hematuria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA