Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4079, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429936

RESUMO

Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within individual bats, and hence the frequency of virus co-infection and spillover among them. We characterize the mammal-associated viruses in 149 individual bats sampled from Yunnan province, China, using an unbiased meta-transcriptomics approach. This reveals a high frequency of virus co-infection (simultaneous infection of bat individuals by multiple viral species) and spillover among the animals studied, which may in turn facilitate virus recombination and reassortment. Of note, we identify five viral species that are likely to be pathogenic to humans or livestock, based on phylogenetic relatedness to known pathogens or in vitro receptor binding assays. This includes a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV and SARS-CoV-2. In vitro assays indicate that this recombinant virus can utilize the human ACE2 receptor such that it is likely to be of increased emergence risk. Our study highlights the common occurrence of co-infection and spillover of bat viruses and their implications for virus emergence.


Assuntos
COVID-19 , Quirópteros , Coinfecção , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Humanos , Filogenia , SARS-CoV-2 , Viroma , China/epidemiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética
2.
bioRxiv ; 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36451889

RESUMO

Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within bats at the level of individual animals, and hence the frequency of virus co-infection and inter-species transmission. Using an unbiased meta-transcriptomics approach we characterised the mammalian associated viruses present in 149 individual bats sampled from Yunnan province, China. This revealed a high frequency of virus co-infection and species spillover among the animals studied, with 12 viruses shared among different bat species, which in turn facilitates virus recombination and reassortment. Of note, we identified five viral species that are likely to be pathogenic to humans or livestock, including a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV-2 and SARS-CoV, with only five amino acid differences between its receptor-binding domain sequence and that of the earliest sequences of SARS-CoV-2. Functional analysis predicts that this recombinant coronavirus can utilize the human ACE2 receptor such that it is likely to be of high zoonotic risk. Our study highlights the common occurrence of inter-species transmission and co-infection of bat viruses, as well as their implications for virus emergence.

3.
Viruses ; 13(10)2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34696392

RESUMO

Bats have been identified as natural reservoirs of a variety of coronaviruses. They harbor at least 19 of the 33 defined species of alpha- and betacoronaviruses. Previously, the bat coronavirus HKU10 was found in two bat species of different suborders, Rousettus leschenaultia and Hipposideros pomona, in south China. However, its geographic distribution and evolution history are not fully investigated. Here, we screened this viral species by a nested reverse transcriptase PCR in our archived samples collected over 10 years from 25 provinces of China and one province of Laos. From 8004 bat fecal samples, 26 were found to be positive for bat coronavirus HKU10 (BtCoV HKU10). New habitats of BtCoV HKU10 were found in the Yunnan, Guangxi, and Hainan Provinces of China, and Louang Namtha Province in Laos. In addition to H. pomona, BtCoV HKU10 variants were found circulating in Aselliscus stoliczkanus and Hipposideros larvatus. We sequenced full-length genomes of 17 newly discovered BtCoV HKU10 strains and compared them with previously published sequences. Our results revealed a much higher genetic diversity of BtCoV HKU10, particularly in spike genes and accessory genes. Besides the two previously reported lineages, we found six novel lineages in their new habitats, three of which were located in Yunnan province. The genotypes of these viruses are closely related to sampling locations based on polyproteins, and correlated to bat species based on spike genes. Combining phylogenetic analysis, selective pressure, and molecular-clock calculation, we demonstrated that Yunnan bats harbor a gene pool of BtCoV HKU10, with H. pomona as a natural reservoir. The cell tropism test using spike-pseudotyped lentivirus system showed that BtCoV HKU10 could enter cells from human and bat, suggesting a potential interspecies spillover. Continuous studies on these bat coronaviruses will expand our understanding of the evolution and genetic diversity of coronaviruses, and provide a prewarning of potential zoonotic diseases from bats.


Assuntos
Alphacoronavirus/genética , Quirópteros/virologia , Alphacoronavirus/patogenicidade , Animais , Sequência de Bases/genética , Evolução Biológica , China , Quirópteros/genética , Coronavirus/genética , Coronavirus/patogenicidade , Infecções por Coronavirus/virologia , Evolução Molecular , Variação Genética/genética , Genoma Viral/genética , Genótipo , Filogenia , Análise de Sequência de DNA/métodos , Proteínas Virais/genética
4.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669833

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) has represented a human health threat since 2012. Although several MERS-related CoVs that belong to the same species as MERS-CoV have been identified from bats, they do not use the MERS-CoV receptor, dipeptidyl peptidase 4 (DPP4). Here, we screened 1,059 bat samples from at least 30 bat species collected in different regions in south China and identified 89 strains of lineage C betacoronaviruses, including Tylonycteris pachypus coronavirus HKU4, Pipistrellus pipistrelluscoronavirus HKU5, and MERS-related CoVs. We sequenced the full-length genomes of two positive samples collected from the great evening bat, Ia io, from Guangdong Province. The two genomes were highly similar and exhibited genomic structures identical to those of other lineage C betacoronaviruses. While they exhibited genome-wide nucleotide identities of only 75.3 to 81.2% with other MERS-related CoVs, their gene-coding regions were highly similar to their counterparts, except in the case of the spike proteins. Further protein-protein interaction assays demonstrated that the spike proteins of these MERS-related CoVs bind to the receptor DPP4. Recombination analysis suggested that the newly discovered MERS-related CoVs have acquired their spike genes from a DPP4-recognizing bat coronavirus HKU4. Our study provides further evidence that bats represent the evolutionary origins of MERS-CoV.IMPORTANCE Previous studies suggested that MERS-CoV originated in bats. However, its evolutionary path from bats to humans remains unclear. In this study, we discovered 89 novel lineage C betacoronaviruses in eight bat species. We provide evidence of a MERS-related CoV derived from the great evening bat that uses the same host receptor as human MERS-CoV. This virus also provides evidence for a natural recombination event between the bat MERS-related CoV and another bat coronavirus, HKU4. Our study expands the host ranges of MERS-related CoV and represents an important step toward establishing bats as the natural reservoir of MERS-CoV. These findings may lead to improved epidemiological surveillance of MERS-CoV and the prevention and control of the spread of MERS-CoV to humans.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/veterinária , Evolução Molecular , Genoma Viral , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Receptores Virais/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Quirópteros/genética , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Especificidade de Hospedeiro , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Filogenia , Receptores Virais/genética , Homologia de Sequência , Proteínas Virais/genética
6.
Virol Sin ; 31(1): 31-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26920708

RESUMO

Since the 2002-2003 severe acute respiratory syndrome (SARS) outbreak prompted a search for the natural reservoir of the SARS coronavirus, numerous alpha- and betacoronaviruses have been discovered in bats around the world. Bats are likely the natural reservoir of alpha- and betacoronaviruses, and due to the rich diversity and global distribution of bats, the number of bat coronaviruses will likely increase. We conducted a surveillance of coronaviruses in bats in an abandoned mineshaft in Mojiang County, Yunnan Province, China, from 2012-2013. Six bat species were frequently detected in the cave: Rhinolophus sinicus, Rhinolophus affinis, Hipposideros pomona, Miniopterus schreibersii, Miniopterus fuliginosus, and Miniopterus fuscus. By sequencing PCR products of the coronavirus RNA-dependent RNA polymerase gene (RdRp), we found a high frequency of infection by a diverse group of coronaviruses in different bat species in the mineshaft. Sequenced partial RdRp fragments had 80%-99% nucleic acid sequence identity with well-characterized Alphacoronavirus species, including BtCoV HKU2, BtCoV HKU8, and BtCoV1, and unassigned species BtCoV HKU7 and BtCoV HKU10. Additionally, the surveillance identified two unclassified betacoronaviruses, one new strain of SARS-like coronavirus, and one potentially new betacoronavirus species. Furthermore, coronavirus co-infection was detected in all six bat species, a phenomenon that fosters recombination and promotes the emergence of novel virus strains. Our findings highlight the importance of bats as natural reservoirs of coronaviruses and the potentially zoonotic source of viral pathogens.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/virologia , Coronavirus/isolamento & purificação , Sequência de Aminoácidos , Animais , Sequência de Bases , China/epidemiologia , Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Genoma Viral , Filogenia , Reação em Cadeia da Polimerase/métodos , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , Análise de Sequência de DNA , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/genética , Síndrome Respiratória Aguda Grave/veterinária
7.
J Gen Virol ; 96(12): 3525-3531, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26475793

RESUMO

Bats have been identified as natural reservoirs of many viruses, including reoviruses. Recent studies have demonstrated the interspecies transmission of bat reoviruses to humans. In this study, we report the isolation and molecular characterization of six strains of mammalian orthoreovirus (MRV) from Hipposideros and Myotis spp. These isolates were grouped into MRV serotype 1, 2 or 3 based on the sequences of the S1 gene, which encodes the outer coat protein s1. Importantly, we found that three of six bat MRV strains shared high similarity with MRVs isolated from diseased minks, piglets or humans based on the S1 segment, suggesting that interspecies transmission has occurred between bats and humans or animals. Phylogenetic analyses based on the 10 segments showed that the genomic segments of these bat MRVs had different evolution lineages, suggesting that these bat MRVs may have arisen through reassortment of MRVs of different origins.


Assuntos
Quirópteros/virologia , Vison/virologia , Orthoreovirus de Mamíferos/classificação , Orthoreovirus de Mamíferos/isolamento & purificação , Infecções por Reoviridae/veterinária , Suínos/virologia , Animais , China/epidemiologia , Reservatórios de Doenças/virologia , Humanos , Orthoreovirus de Mamíferos/genética , Filogenia , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/transmissão , Infecções por Reoviridae/virologia , Sorogrupo
8.
Nature ; 503(7477): 535-8, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24172901

RESUMO

The 2002-3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history. An ongoing outbreak of Middle East respiratory syndrome coronavirus suggests that this group of viruses remains a key threat and that their distribution is wider than previously recognized. Although bats have been suggested to be the natural reservoirs of both viruses, attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. Diverse SARS-like coronaviruses (SL-CoVs) have now been reported from bats in China, Europe and Africa, but none is considered a direct progenitor of SARS-CoV because of their phylogenetic disparity from this virus and the inability of their spike proteins to use the SARS-CoV cellular receptor molecule, the human angiotensin converting enzyme II (ACE2). Here we report whole-genome sequences of two novel bat coronaviruses from Chinese horseshoe bats (family: Rhinolophidae) in Yunnan, China: RsSHC014 and Rs3367. These viruses are far more closely related to SARS-CoV than any previously identified bat coronaviruses, particularly in the receptor binding domain of the spike protein. Most importantly, we report the first recorded isolation of a live SL-CoV (bat SL-CoV-WIV1) from bat faecal samples in Vero E6 cells, which has typical coronavirus morphology, 99.9% sequence identity to Rs3367 and uses ACE2 from humans, civets and Chinese horseshoe bats for cell entry. Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen-discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness.


Assuntos
Quirópteros/virologia , Peptidil Dipeptidase A/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , China , Chlorocebus aethiops , Reservatórios de Doenças/virologia , Fezes/virologia , Imunofluorescência , Genoma Viral/genética , Especificidade de Hospedeiro , Humanos , Dados de Sequência Molecular , Pandemias/prevenção & controle , Pandemias/veterinária , Peptidil Dipeptidase A/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Virais/genética , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/ultraestrutura , Síndrome Respiratória Aguda Grave/prevenção & controle , Síndrome Respiratória Aguda Grave/transmissão , Síndrome Respiratória Aguda Grave/veterinária , Síndrome Respiratória Aguda Grave/virologia , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Vírion/isolamento & purificação , Vírion/ultraestrutura , Internalização do Vírus , Viverridae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA