Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Radiat Res ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287101

RESUMO

Deregulation of circular RNAs (circRNAs) is frequent in human glioma. Although circRNA ATPase phospholipid transporting 8B4 (circATP8B4) is highly expressed in glioma, its precise action in glioma development is still not fully understood. The relationship of microRNA (miR)-31-5p and circATP8B4 or nestin (NES) was predicted by bioinformatic analysis and confirmed by RNA pull-down and Dual-luciferase reporter assays. CircATP8B4, miR-31-5p and NES were quantified by qRT-PCR or western blot. Cell functional behaviors were assessed by EdU, wound-healing and transwell invasion assays. Xenograft model experiments were performed to define circATP8B4's activity in vivo. CircATP8B4, a true circular transcript, was upregulated in human glioma. CircATP8B4 downregulation weakened glioma cell growth, motility, and invasion and facilitated radiosensitivity. Mechanistically, circATP8B4 and NES 3'UTR harbored a shared miR-31-5p pairing site, and circATP8B4 involved the post-transcriptional NES regulation by functioning as a competing endogenous RNA (ceRNA). Furthermore, the miR-31-5p/NES axis participated in circATP8B4's activity in glioma cell proliferation, motility, invasion and radiosensitivity. Additionally, circATP8B4 loss diminished tumor growth and enhanced the anticancer effect of radiotherapy in vivo. We have uncovered an uncharacterized ceRNA cascade, circATP8B4/miR-31-5p/NES axis, underlying glioma development and radiosensitivity. Targeting the ceRNA crosstalk may have potential to improve the outcome of glioma patients.

2.
Sci Rep ; 14(1): 17630, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085480

RESUMO

Glioblastoma (GBM) is a highly aggressive, infiltrative malignancy that cannot be completely cured by current treatment modalities, and therefore requires more precise molecular subtype signatures to predict treatment response for personalized precision therapy. Expression subtypes of GBM samples from the Cancer Genome Atlas (TCGA) were identified using BayesNM and compared with existing molecular subtypes of GBM. Biological features of the subtypes were determined by single-sample gene set enrichment analysis. Genomic and proteomic data from GBM samples were combined and Genomic Identification of Significant Targets in Cancer analysis was used to screen genes with recurrent somatic copy-number alterations phenomenon. The immune environment among subtypes was compared by assessing the expression of immune molecules and the infiltration of immune cells. Molecular subtypes adapted to immunotherapy were identified based on Tumor Immune Dysfunction and Exclusion (TIDE) score. Finally, least absolute shrinkage and selection operator (LASSO) logistic regression was performed on the expression profiles of S2, S3 and S4 in TCGA-GBM and RPPA to determine the respective corresponding best predictive model. Four novel molecular subtypes were classified. Specifically, S1 exhibited a low proliferative profile; S2 exhibited the profile of high proliferation, IDH1 mutation, TP53 mutation and deletion; S3 was characterized by high immune scores, innate immunity and adaptive immune infiltration scores, with the lowest TIDE score and was most likely to benefit from immunotherapy; S4 was characterized by high proliferation, EGFR amplification, and high protein abundance, and was the most suitable subtype for bevacizumab. LASSO analysis constructed the best prediction model composed of 13 genes in S2 with an accuracy of 96.7%, and the prediction model consisting of 17 genes in S3 with an accuracy of 86.7%, and screened 14 genes as components of the best prediction model in S4 with an accuracy of 93%. To conclude, our study classified reproducible and robust molecular subtypes of GBM, and these findings might contribute to the identification of patients responding to immunotherapy, thereby improving GBM prognosis.


Assuntos
Bevacizumab , Neoplasias Encefálicas , Genômica , Glioblastoma , Imunoterapia , Proteômica , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/terapia , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Bevacizumab/uso terapêutico , Imunoterapia/métodos , Proteômica/métodos , Genômica/métodos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Antineoplásicos Imunológicos/uso terapêutico , Mutação
3.
J Med Chem ; 67(13): 10655-10686, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38913699

RESUMO

Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncogenic membrane protein in several malignancies and has been considered an attractive target for the treatment of human cancers. In this study, structure-based virtual screening and structure optimization were conducted to identify novel ROR1 inhibitors. Based on hit compound 2, 45 novel ROR1 inhibitors were designed and synthesized, and the detailed structure-activity relationship was investigated. Representative compound 19h potently binds ROR1 with a KD value of 0.10 µM, exhibiting antitumor activity in lung cancer and breast cancer cell lines (IC50: 0.36-1.37 µM). Additionally, a mechanism investigation demonstrated that compound 19h induces the apoptosis of tumor cells. Importantly, compound 19h significantly suppressed tumor growth in a mouse model without obvious toxicity. Overall, this work identified compound 19h as a new ROR1 inhibitor, providing a novel lead compound for the treatment of lung cancer and breast cancer.


Assuntos
Antineoplásicos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/antagonistas & inibidores , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Humanos , Animais , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Camundongos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/uso terapêutico , Apoptose/efeitos dos fármacos , Feminino , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Camundongos Nus , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos BALB C , Estrutura Molecular , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Anal Chem ; 96(21): 8576-8585, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712678

RESUMO

Quinolones, a widely used class of antibiotics, present significant environmental and health concerns if they excessively remain in the environment and in food. Aptamers specific to quinolones can be applied as bioreceptors for the detection of quinolone residues in the environment and food. The quinolone family contains dozens of different individuals that share the same core structure coupled with various substituents at six different positions. The diversity and complexity of the substitution sites make it a challenge to choose a set of representative molecules that encompass all the desired sites and preserve the core molecular framework for the screening of quinolone-specific aptamers via systematic evolution of ligands by exponential enrichment (SELEX). To address this challenge, we introduce a novel parallel-series strategy guided by Liebig's law for isolating quinolone-specific cross-reactive aptamers by using the library-immobilized SELEX method. Through this approach, we successfully identified 5 aptamers (Apt.AQ01-Apt.AQ05) with high binding affinity and excellent specificity to 24 different quinolone individuals. Among them, Apt.AQ03 showcased optimal performance with affinities ranging from 0.14 to 1.07 µM across the comprehensive set of 24 quinolones, exhibiting excellent specificity against nontarget interferents. The binding performance of Apt.AQ03 was further characterized with microscale thermophoresis, circular dichroism spectra, and an exonuclease digestion assay. By using Apt.AQ03 as a bioreceptor, a fluorescence resonance energy transfer (FRET) aptasensor was developed for the detection of 24 quinolones in milk, achieving a remarkable detection limit of 14.5-21.8 ng/mL. This work not only establishes a robust and effective strategy for selecting cross-reactive aptamers applicable to other small-molecule families but also provides high-quality aptamers for developing various high-throughput and reliable methods for the detection of multiple quinolone residues in food.


Assuntos
Aptâmeros de Nucleotídeos , Quinolonas , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/química , Quinolonas/análise , Quinolonas/química , Técnica de Seleção de Aptâmeros/métodos , Animais , Leite/química
5.
Med Res Rev ; 44(5): 2331-2362, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38665010

RESUMO

Over the past decade, there has been a notable increase in research on sphingosine-1-phosphate receptor 2 (S1PR2), which is a type of G-protein-coupled receptor. Upon activation by S1P or other ligands, S1PR2 initiates downstream signaling pathways such as phosphoinositide 3-kinase (PI3K), Mitogen-activated protein kinase (MAPK), Rho/Rho-associated coiled-coil containing kinases (ROCK), and others, contributing to the diverse biological functions of S1PR2 and playing a pivotal role in various physiological processes and disease progressions, such as multiple sclerosis, fibrosis, inflammation, and tumors. Due to the extensive biological functions of S1PR2, many S1PR2 modulators, including agonists and antagonists, have been developed and discovered by pharmaceutical companies (e.g., Novartis and Galapagos NV) and academic medicinal chemists for disease diagnosis and treatment. However, few reviews have been published that comprehensively overview the functions and regulators of S1PR2. Herein, we provide an in-depth review of the advances in the function of S1PR2 and its modulators. We first summarize the structure and biological function of S1PR2 and its pathological role in human diseases. We then focus on the discovery approach, design strategy, development process, and biomedical application of S1PR2 modulators. Additionally, we outline the major challenges and future directions in this field. Our comprehensive review will aid in the discovery and development of more effective and clinically applicable S1PR2 modulators.


Assuntos
Bibliotecas de Moléculas Pequenas , Receptores de Esfingosina-1-Fosfato , Humanos , Receptores de Esfingosina-1-Fosfato/metabolismo , Animais , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Transdução de Sinais
6.
Eur J Med Chem ; 260: 115763, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659196

RESUMO

ProTide prodrug technology has emerged as a promising way for the development of anti-viral and anti-tumor drugs, whereas, there are fewer applications for the treatment of liver cancer. Herein, a series of distinct 3'-ester ProTide prodrugs of 5-fluoro-2'-deoxyuridine (FdUR) were synthesized and evaluated for their anti-liver cancer activity. The most efficient prodrug 11b reached a sub-micromolar activity (IC50 = 0.42 ± 0.13 µM) against HepG2 and over 100-fold and 200-fold improvements compared to 5-FU, respectively. 11b also demonstrated favorable selectivity towards normal liver cells L-02 (IC50 > 100 µM). In vitro metabolic stability studies revealed that 11b is stable in the plasma and could be activated rapidly in the liver, which supported that 11b is liver-targeted. Importantly, to more accurately evaluate the anti-HCC activity of 11b, the liver orthotopic model was built and 11b significantly suppressed tumor growth (TGI = 75.5%) at a dose of 60 mg/kg/2d in vivo without obvious toxicity. Overall, these promising results indicated that 11b could serve as a safe and effective prodrug of 5-FU nucleoside for liver cancer therapy.


Assuntos
Neoplasias Hepáticas , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Desoxiuridina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico
7.
Curr Pharm Biotechnol ; 24(2): 310-316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35570553

RESUMO

BACKGROUND: Human brain tumor glioblastoma (GBM) is the most hostile malignancy, currently lacking a successful cure and good prognosis. OBJECTIVE: To examine the anticancer effects of syringic acid (SA) on human cancer GBM cells. METHODOLOGY: The different doses of SA were added to GBM cells to study its effect on viability, invasion, relocation, apoptosis, and mRNA and protein levels. Hence, we explored the antiproliferative, anti-invasive, and apoptotic activity of SA on GBM human U-251 cells. RESULTS: MTT assay and live/dead assay revealed the anti-proliferative activity of SA on U-251 glioma cells. Apoptotic activity of SA was shown by DAPI staining, caspase-3, Bax, and Bcl-2 mRNA expressions. The cell cycle regulation was also confirmed by reducing the mRNA expression of cyclinD1, CDK4, and CDK6. Treatment of SA with U-251 cells suppressed MMPs expressions and enhanced TIMPs protein levels. CONCLUSION: Our findings put forward that SA could prevent GBM cells' invasion and relocation. SA is an ideal neuroprotective agent for controlling brain malignancy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , RNA Mensageiro
8.
Bioorg Chem ; 131: 106318, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36527992

RESUMO

Targeting sphingosine-1-phosphate receptor 2 (S1PR2) has been proved as a promising strategy to reverse 5-fluorouracil (5-FU) resistance. Here, we report the discovery of the novel JTE-013 derivative compound 37 h as a more effective S1PR2 antagonist to reverse 5-FU resistance in SW620/5-FU and HCT116DPD cells than JTE-013 and previously reported compound 5. Compound 37 h could effectively bind S1PR2 and reduce its expression, thus leading to decreased expression of JMJD3 and dihydropyrimidine dehydrogenase (DPD), while also increasing the level of H3K27me3 to decrease the degradation of 5-FU and thereby increase its intracellular concentration in SW620/5-FU, HCT116DPD, and L02 cells. Furthermore, compound 37 h showed good selectivity to other S1PRs and normal colon cell line NCM460. Western blot analysis demonstrated that compound 37 h could abrogate the FBAL-stimulated upregulation of DPD expression by S1PR2. Importantly, compound 37 h also showed favorable metabolic stability with a long half-life (t1/2) of 7.9 h. Moreover, compound 37 h significantly enhanced the antitumor efficacy of 5-FU in the SW620/5-FU animal model. Thus, the JTE-013-based derivative compound 37 h represents a promising lead compound for the development of novel 5-FU sensitizers for colorectal cancer (CRC) therapy.


Assuntos
Neoplasias Colorretais , Fluoruracila , Animais , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Receptores de Esfingosina-1-Fosfato , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Di-Hidrouracila Desidrogenase (NADP)/metabolismo
10.
J Med Chem ; 65(21): 14553-14577, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36269639

RESUMO

Resistance to 5-FU reduces its clinical efficacy for the treatment of colorectal cancer. Sphingosine-1-phosphate receptor 2 (S1PR2) has emerged as a potential target to reverse 5-FU-resistance by inhibiting the expression of dihydropyrimidine dehydrogenase (DPD). In this study, 38 novel S1PR2 antagonists based on aryl urea structure were designed and synthesized, and the structure-activity relationship was investigated based on the S1PR2 binding assay. Representative compound 43 potently interacts with S1PR2 with a KD value of 0.73 nM. It displays potent 5-FU resensitizing activity in multiple 5-FU-resistant tumor cell lines, particularly in SW620/5-FU (EC50 = 1.99 ± 0.03 µM) but shows no cytotoxicity in the normal colon cell line NCM460 up to 1000 µM. Moreover, 43 significantly enhances the antitumor efficacy of 5-FU in the SW620/5-FU animal model. These data suggest that 43 could be a novel lead compound for developing a 5-FU resensitizing agent.


Assuntos
Neoplasias Colorretais , Fluoruracila , Animais , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Antimetabólitos Antineoplásicos/farmacologia , Receptores de Esfingosina-1-Fosfato , Di-Hidrouracila Desidrogenase (NADP) , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia
11.
Cell Mol Biol (Noisy-le-grand) ; 67(6): 149-154, 2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35818202

RESUMO

The occurrence of glioma is gradually promoted by various factors, and it has gone through multiple stages of development, involving abnormal expression of multiple genes. One of the important reasons for the development of gliomas is the interaction of genetic factors and the environment. Non-coding transcripts can also form this high-level structure, and the formation of binding sites for interactions between lncRNA and proteins, DNA, and other RNA molecules may be related to their structural diversity. Due to the importance of glioma-related research and the potential effectiveness of lncRNA, this paper focuses on the mechanism of long-chain non-coding RNA targeting the Mir signal axis to regulate apoptosis, invasion and migration of glioma U251 cells. In this paper, human glioma cell line U251 was used as experimental material for simulation analysis. The results showed that after miR simulation, the pass rate of U251 stem cells through the filter was 17.3%, which was significantly less than 85.4% of group C; compared with 77.6% of the negative control group, the cell penetration rate of the miR inhibitor group was significantly improved. 92.5%. The miR expression level can affect the invasion ability of U251 stem cells, and can negatively regulate the expression of fzd4 to inhibit the invasion and metastasis of glioma U251 cells.


Assuntos
Glioma , MicroRNAs , RNA Longo não Codificante , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
12.
Front Psychol ; 13: 899021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664199

RESUMO

The political environment has a significant impact on the sustainable development of enterprises. This manuscript aims to investigate the effect of policy uncertainty and official social capital on enterprises' effective tax rate (ETR) due to the change of officials. Based on the panel data from the Chinese Industrial Enterprise Database from 1998 to 2009, it is shown that the policy uncertainty caused by the change of local government officials significantly increases the ETR of enterprises. Meanwhile, municipal officials who have social ties with provincial officials in their province also tend to raise the ETR of industrial enterprises, and this tendency is more evident when the officials take office. Further research shows that the effects vary in many aspects for policy uncertainty and social capital on the ETR of enterprises. The findings of this manuscript provide support for a deeper understanding of the change in local government fiscal policies and give suggestions to strengthen political environmental governance for the sustainable development of enterprises.

13.
Eur J Med Chem ; 227: 113923, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34688013

RESUMO

Sphingosine-1-phosphate receptor 2 (S1PR2) has been identified as a brand-new GPCR target for designing antagonists to reverse 5-FU resistance. We herein report the structural optimization and structure-activity relationship of JTE-013 derivatives as S1PR2 antagonists. Compound 9d was the most potent S1PR2 antagonist (KD = 34.8 nM) among developed compounds. Here, compound 9d could significantly inhibit the expression of dihydropyrimidine dehydrogenase (DPD) to reverse 5-FU-resistance in HCT116DPD and SW620/5-FU cells. Further mechanism studies demonstrated that compound 9d not only inhibited S1PR2 but also affected the transcription of S1PR2. In addition, compound 9d also showed acceptable selectivity to normal cells (NCM460). Importantly, compound 9d with suitable pharmacokinetic properties could significantly reverse 5-FU-resistance in the HCT116DPD and SW620/5-FU xenograft models without obvious toxicity, in which the inhibition rates of 5-FU were increased from 23.97% to 65.29% and 27.23% to 60.81%, respectively. Further immunohistochemistry and western blotting analysis also demonstrated that compound 9d significantly decreases the expression of DPD in tumor and liver tissues. These results indicated that compound 9d is a promising lead compound to reverse 5-FU-resistance for colorectal cancer therapy.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Desenho de Fármacos , Fluoruracila/farmacologia , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Animais , Antimetabólitos Antineoplásicos/síntese química , Antimetabólitos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila/síntese química , Fluoruracila/química , Humanos , Masculino , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ratos , Ratos Sprague-Dawley , Receptores de Esfingosina-1-Fosfato/metabolismo , Relação Estrutura-Atividade
14.
Eur J Med Chem ; 225: 113775, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34411894

RESUMO

5-Fluorouracil (5-FU) and its prodrugs are the essential clinical drugs for colorectal cancer (CRC) treatment. However, the drug resistance of 5-FU has caused high mortality of CRC patients. Thus, it is urgent to develop reversal agents of 5-FU resistance. Sphingosine-1-phosphate receptor 2 (S1PR2) was proved to be a potential target for reversing 5-FU resistance, but the activity of known S1PR2 antagonists JTE-013 were weak in 5-FU-resistant cell lines. To develop more potent S1PR2 antagonists to treat 5-FU-resistant cancer, a series of JTE-013 derivatives were designed and synthesized. The most promising compound 40 could markedly reverse the resistance in 5-FU-resistant HCT116 cells and 5-FU-resistant SW620 cells via inhibiting the expression of dihydropyrimidine dehydrogenase (DPD). The key was that compound 40 with improved pharmacokinetic properties significantly increased the inhibitory rate of 5-FU in the SW620/5-FU cells xenograft model with no observable toxicity by inhibiting the expression of DPD in tumor and liver tissues. Altogether, these results suggest that compound 40 may be a promising drug candidate to reverse 5-FU resistance in the treatment of CRC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Desenho de Fármacos , Fluoruracila/farmacologia , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila/síntese química , Fluoruracila/química , Humanos , Estrutura Molecular , Receptores de Esfingosina-1-Fosfato/metabolismo , Relação Estrutura-Atividade
15.
J Acoust Soc Am ; 148(2): EL125, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32873001

RESUMO

This paper proposes a strategy to broaden the sound absorption region of porous materials by embedding ribs. The theoretical solution and the numerical simulations of the optimization model show that the composite metastructure exhibits ultra-wide high absorption characteristics and an average sound absorption coefficient of 0.937 in the 0-10 kHz range upon its teaching-learning-based optimization. High sound pressures are present only among the embedded ribs. A significant slowing down of the sound takes place inside the metastructure. The impedance tube test confirms the design of the broadband sound absorption region in agreement with the teaching-learning-based optimization method.

16.
Mar Drugs ; 18(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629787

RESUMO

Given our previous finding that fluorination at the C18 position of largazole showed reasonably good tolerance towards inhibitory activity and selectivity of histone deacetylases (HDACs), further modification on the valine residue in the fluoro-largazole's macrocyclic moiety with S-Me l-Cysteine or Glycine residue was performed. While the Glycine-modified fluoro analog showed poor activity, the S-Me l-Cysteine-modified analog emerged to be a very potent HDAC inhibitor. Unlike all previously reported C2-modified compounds in the largazole family (including our recent fluoro-largazole analogs) where replacement of the Val residue has failed to provide any potency improvement, the S-Me l-Cysteine-modified analog displayed significantly enhanced (five-nine-fold) inhibition of all the tested HDACs while maintaining the selectivity of HDAC1 over HDAC6, as compared to largazole thiol. A molecular modeling study provided rational explanation and structural evidence for the enhanced inhibitory activity. This new finding will aid the design of novel potent HDAC inhibitors.


Assuntos
Depsipeptídeos/química , Depsipeptídeos/farmacologia , Histona Desacetilases/metabolismo , Tiazóis/química , Tiazóis/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade
17.
Oncogene ; 39(29): 5214-5227, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32546724

RESUMO

Aberrant sphingolipid metabolism has been implicated in chemoresistance, but the underlying mechanisms are still poorly understood. Herein we revealed a previously unrecognized mechanism of 5-fluorouracil (5-FU) resistance contributed by high SphK2-upregulated dihydropyrimidine dehydrogenase (DPD) in colorectal cancer (CRC), which is evidenced from human CRC specimens, animal models, and cancer cell lines. TMA samples from randomly selected 60 CRC specimens firstly identified the clinical correlation between high SphK2 and increased DPD (p < 0.001). Then the regulatory mechanism was explored in CRC models of villin-SphK2 Tg mice, SphK2-/-mice, and human CRC cells xenografted nude mice. Assays of ChIP-Seq and luciferase reporter gene demonstrated that high SphK2 upregulated DPD through promoting the HDAC1-mediated H3K56ac, leading to the degradation of intracellular 5-FU into inactive α-fluoro-ß-alanine (FBAL). Lastly, inhibition of SphK2 by SLR080811 exhibited excellent inhibition on DPD expression and potently reversed 5-FU resistance in colorectal tumors of villin-SphK2 Tg mice. Overall, this study manifests that SphK2high conferred 5-FU resistance through upregulating tumoral DPD, which highlights the strategies of blocking SphK2 to overcome 5-FU resistance in CRC.


Assuntos
Neoplasias Colorretais/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/uso terapêutico , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Humanos , Camundongos , Regulação para Cima
19.
J Comput Biol ; 27(10): 1553-1560, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32311294

RESUMO

FD-180 and FD-600 are two next-generation sequencing panels developed by First Dimension Biosciences Co. for detecting mutations in cancer tissues and providing therapeutics guidance in precision medicine applications. FD-180 includes the coding exons of about 180 genes, including all the known drug target genes and some important driver genes; whereas FD-600 includes the coding exons of 578 cancer driver genes in the COSMIC database as of year 2016 when the panels are developed. Additional noncoding regions in the selected genes are included if they are reported as clinically meaningful in ClinVar. Tumor mutation burden (TMB) is a statistical index calculated from genomic sequencing for immunotherapeutic treatments, especially for PD1/PD-L1 antibodies. We used our computational algorithm on 81 patients and provided their classifications. TMB can be estimated quite accurately for the FD-180 and FD-600 panels, both for The Cancer Genome Atlas data and in clinical practice.


Assuntos
Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Neoplasias/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Criança , Pré-Escolar , Biologia Computacional , Exoma/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Mutação INDEL , Imunoterapia , Masculino , Pessoa de Meia-Idade , Neoplasias/terapia , Polimorfismo de Nucleotídeo Único , Medicina de Precisão , Adulto Jovem
20.
Pharmacol Res ; 155: 104717, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32088343

RESUMO

In this study, S1PR2 was reckoned as a brand-new GPCR target for designing inhibitors to reverse 5-FU resistance. Herein a series of pyrrolidine pyrazoles as the S1PR2 inhibitors were designed, synthesized and evaluated for their activities of anti-FU-resistance. Among them, the most promising compound JTE-013, exhibited excellent inhibition on DPD expression and potent anti-FU-resistance activity in various human cancer cell lines, along with the in vivo HCT116DPD cells xenograft model, in which the inhibition rate of 5-FU was greatly increased from 13.01%-75.87%. The underlying mechanism was uncovered that JTE-013 demonstrated an anti-FU-resistance activity by blocking S1PR2 internalization to the endoplasmic reticulum (ER), which inhibited the degradation of 5-FU into α-fluoro-ß-alanine (FBAL) by downregulating tumoral DPD expression. Overall, JTE-013 could serve as the lead compound for the discovery of new anti-FU-resistance drugs. SIGNIFICANCE: This study provides novel insights that S1PR2 inhibitors could sensitize 5-FU therapy in colorectal cancer.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/uso terapêutico , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Di-Hidrouracila Desidrogenase (NADP)/genética , Regulação para Baixo/efeitos dos fármacos , Humanos , Camundongos Nus , Simulação de Acoplamento Molecular , Pirazóis/farmacologia , Piridinas/farmacologia , Receptores de Esfingosina-1-Fosfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA