Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13076, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567908

RESUMO

Chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD) are clinically and molecularly heterogeneous diseases. We utilized clustering and integrative network analyses to elucidate roles for microRNAs (miRNAs) and miRNA isoforms (isomiRs) in COPD and ILD pathogenesis. Short RNA sequencing was performed on 351 lung tissue samples of COPD (n = 145), ILD (n = 144) and controls (n = 64). Five distinct subclusters of samples were identified including 1 COPD-predominant cluster and 2 ILD-predominant clusters which associated with different clinical measurements of disease severity. Utilizing 262 samples with gene expression and SNP microarrays, we built disease-specific genetic and expression networks to predict key miRNA regulators of gene expression. Members of miR-449/34 family, known to promote airway differentiation by repressing the Notch pathway, were among the top connected miRNAs in both COPD and ILD networks. Genes associated with miR-449/34 members in the disease networks were enriched among genes that increase in expression with airway differentiation at an air-liquid interface. A highly expressed isomiR containing a novel seed sequence was identified at the miR-34c-5p locus. 47% of the anticorrelated predicted targets for this isomiR were distinct from the canonical seed sequence for miR-34c-5p. Overexpression of the canonical miR-34c-5p and the miR-34c-5p isomiR with an alternative seed sequence down-regulated NOTCH1 and NOTCH4. However, only overexpression of the isomiR down-regulated genes involved in Ras signaling such as CRKL and GRB2. Overall, these findings elucidate molecular heterogeneity inherent across COPD and ILD patients and further suggest roles for miR-34c in regulating disease-associated gene-expression.


Assuntos
Doenças Pulmonares Intersticiais , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Pulmão/patologia , Doenças Pulmonares Intersticiais/metabolismo , Genômica
2.
Nat Commun ; 13(1): 4953, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999207

RESUMO

Mutational signatures accumulate in somatic cells as an admixture of endogenous and exogenous processes that occur during an individual's lifetime. Since dividing cells release cell-free DNA (cfDNA) fragments into the circulation, we hypothesize that plasma cfDNA might reflect mutational signatures. Point mutations in plasma whole genome sequencing (WGS) are challenging to identify through conventional mutation calling due to low sequencing coverage and low mutant allele fractions. In this proof of concept study of plasma WGS at 0.3-1.5x coverage from 215 patients and 227 healthy individuals, we show that both pathological and physiological mutational signatures may be identified in plasma. By applying machine learning to mutation profiles, patients with stage I-IV cancer can be distinguished from healthy individuals with an Area Under the Curve of 0.96. Interrogating mutational processes in plasma may enable earlier cancer detection, and might enable the assessment of cancer risk and etiology.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Ácidos Nucleicos Livres/genética , Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Neoplasias/genética , Sequenciamento Completo do Genoma
3.
Dev Biol ; 460(2): 139-154, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31816285

RESUMO

Embryonic development is arguably the most complex process an organism undergoes during its lifetime, and understanding this complexity is best approached with a systems-level perspective. The sea urchin has become a highly valuable model organism for understanding developmental specification, morphogenesis, and evolution. As a non-chordate deuterostome, the sea urchin occupies an important evolutionary niche between protostomes and vertebrates. Lytechinus variegatus (Lv) is an Atlantic species that has been well studied, and which has provided important insights into signal transduction, patterning, and morphogenetic changes during embryonic and larval development. The Pacific species, Strongylocentrotus purpuratus (Sp), is another well-studied sea urchin, particularly for gene regulatory networks (GRNs) and cis-regulatory analyses. A well-annotated genome and transcriptome for Sp are available, but similar resources have not been developed for Lv. Here, we provide an analysis of the Lv transcriptome at 11 timepoints during embryonic and larval development. Temporal analysis suggests that the gene regulatory networks that underlie specification are well-conserved among sea urchin species. We show that the major transitions in variation of embryonic transcription divide the developmental time series into four distinct, temporally sequential phases. Our work shows that sea urchin development occurs via sequential intervals of relatively stable gene expression states that are punctuated by abrupt transitions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes Reguladoras de Genes/fisiologia , Lytechinus/embriologia , Transcriptoma/fisiologia , Animais , Strongylocentrotus purpuratus/embriologia
4.
Biochemistry ; 59(4): 563-581, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31851823

RESUMO

Development of small molecule inhibitors of protein-protein interactions (PPIs) is hampered by our poor understanding of the druggability of PPI target sites. Here, we describe the combined application of alanine-scanning mutagenesis, fragment screening, and FTMap computational hot spot mapping to evaluate the energetics and druggability of the highly charged PPI interface between Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2 like 2 (Nrf2), an important drug target. FTMap identifies four binding energy hot spots at the active site. Only two of these are exploited by Nrf2, which alanine scanning of both proteins shows to bind primarily through E79 and E82 interacting with KEAP1 residues S363, R380, R415, R483, and S508. We identify fragment hits and obtain X-ray complex structures for three fragments via crystal soaking using a new crystal form of KEAP1. Combining these results provides a comprehensive and quantitative picture of the origins of binding energy at the interface. Our findings additionally reveal non-native interactions that might be exploited in the design of uncharged synthetic ligands to occupy the same site on KEAP1 that has evolved to bind the highly charged DEETGE binding loop of Nrf2. These include π-stacking with KEAP1 Y525 and interactions at an FTMap-identified hot spot deep in the binding site. Finally, we discuss how the complementary information provided by alanine-scanning mutagenesis, fragment screening, and computational hot spot mapping can be integrated to more comprehensively evaluate PPI druggability.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/química , Fator 2 Relacionado a NF-E2/química , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Descoberta de Drogas , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ligantes , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Domínios Proteicos/efeitos dos fármacos , Domínios Proteicos/fisiologia , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
5.
Proc Natl Acad Sci U S A ; 115(15): E3416-E3425, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581267

RESUMO

Molecular dynamics (MD) simulations of proteins reveal the existence of many transient surface pockets; however, the factors determining what small subset of these represent druggable or functionally relevant ligand binding sites, called "cryptic sites," are not understood. Here, we examine multiple X-ray structures for a set of proteins with validated cryptic sites, using the computational hot spot identification tool FTMap. The results show that cryptic sites in ligand-free structures generally have a strong binding energy hot spot very close by. As expected, regions around cryptic sites exhibit above-average flexibility, and close to 50% of the proteins studied here have unbound structures that could accommodate the ligand without clashes. Nevertheless, the strong hot spot neighboring each cryptic site is almost always exploited by the bound ligand, suggesting that binding may frequently involve an induced fit component. We additionally evaluated the structural basis for cryptic site formation, by comparing unbound to bound structures. Cryptic sites are most frequently occluded in the unbound structure by intrusion of loops (22.5%), side chains (19.4%), or in some cases entire helices (5.4%), but motions that create sites that are too open can also eliminate pockets (19.4%). The flexibility of cryptic sites frequently leads to missing side chains or loops (12%) that are particularly evident in low resolution crystal structures. An interesting observation is that cryptic sites formed solely by the movement of side chains, or of backbone segments with fewer than five residues, result only in low affinity binding sites with limited use for drug discovery.


Assuntos
Proteínas/química , Sítios de Ligação , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
6.
Proteins ; 85(1): 10-16, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27172383

RESUMO

Protein docking procedures carry out the task of predicting the structure of a protein-protein complex starting from the known structures of the individual protein components. More often than not, however, the structure of one or both components is not known, but can be derived by homology modeling on the basis of known structures of related proteins deposited in the Protein Data Bank (PDB). Thus, the problem is to develop methods that optimally integrate homology modeling and docking with the goal of predicting the structure of a complex directly from the amino acid sequences of its component proteins. One possibility is to use the best available homology modeling and docking methods. However, the models built for the individual subunits often differ to a significant degree from the bound conformation in the complex, often much more so than the differences observed between free and bound structures of the same protein, and therefore additional conformational adjustments, both at the backbone and side chain levels need to be modeled to achieve an accurate docking prediction. In particular, even homology models of overall good accuracy frequently include localized errors that unfavorably impact docking results. The predicted reliability of the different regions in the model can also serve as a useful input for the docking calculations. Here we present a benchmark dataset that should help to explore and solve combined modeling and docking problems. This dataset comprises a subset of the experimentally solved 'target' complexes from the widely used Docking Benchmark from the Weng Lab (excluding antibody-antigen complexes). This subset is extended to include the structures from the PDB related to those of the individual components of each complex, and hence represent potential templates for investigating and benchmarking integrated homology modeling and docking approaches. Template sets can be dynamically customized by specifying ranges in sequence similarity and in PDB release dates, or using other filtering options, such as excluding sets of specific structures from the template list. Multiple sequence alignments, as well as structural alignments of the templates to their corresponding subunits in the target are also provided. The resource is accessible online or can be downloaded at http://cluspro.org/benchmark, and is updated on a weekly basis in synchrony with new PDB releases. Proteins 2016; 85:10-16. © 2016 Wiley Periodicals, Inc.


Assuntos
Benchmarking , Caspase 9/química , Simulação de Acoplamento Molecular , Software , Homologia Estrutural de Proteína , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química , Sequência de Aminoácidos , Sítios de Ligação , Caspase 9/metabolismo , Bases de Dados de Proteínas , Humanos , Internet , Ligantes , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
7.
Development ; 143(4): 703-14, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26755701

RESUMO

The sea urchin larval skeleton offers a simple model for formation of developmental patterns. The calcium carbonate skeleton is secreted by primary mesenchyme cells (PMCs) in response to largely unknown patterning cues expressed by the ectoderm. To discover novel ectodermal cues, we performed an unbiased RNA-Seq-based screen and functionally tested candidates; we thereby identified several novel skeletal patterning cues. Among these, we show that SLC26a2/7 is a ventrally expressed sulfate transporter that promotes a ventral accumulation of sulfated proteoglycans, which is required for ventral PMC positioning and skeletal patterning. We show that the effects of SLC perturbation are mimicked by manipulation of either external sulfate levels or proteoglycan sulfation. These results identify novel skeletal patterning genes and demonstrate that ventral proteoglycan sulfation serves as a positional cue for sea urchin skeletal patterning.


Assuntos
Padronização Corporal/genética , Proteoglicanas/metabolismo , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/genética , Análise de Sequência de RNA/métodos , Sulfatos/metabolismo , Animais , Padronização Corporal/efeitos dos fármacos , Proteínas de Transporte de Cátions/metabolismo , Diferenciação Celular/efeitos dos fármacos , Ectoderma/efeitos dos fármacos , Ectoderma/enzimologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Mesoderma/citologia , Modelos Biológicos , Níquel/toxicidade , Ouriços-do-Mar/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Biochemistry ; 54(50): 7326-34, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26600273

RESUMO

Phosphoglycosyltransferases (PGTs) catalyze the transfer of a C1'-phosphosugar from a soluble sugar nucleotide diphosphate to a polyprenol phosphate. These enzymes act at the membrane interface, forming the first membrane-associated intermediates in the biosynthesis of cell-surface glycans and glycoconjugates, including glycoproteins, glycolipids, and the peptidoglycan in bacteria. PGTs vary greatly in both their membrane topologies and their substrate preferences. PGTs, such as MraY and WecA, are polytopic, while other families of uniquely prokaryotic enzymes have only a single predicted transmembrane helix. PglC, a PGT involved in the biosynthesis of N-linked glycoproteins in the enteropathogen Campylobacter jejuni, is representative of one of the structurally most simple members of the diverse family of small bacterial PGT enzymes. Herein, we apply bioinformatics and covariance-weighted distance constraints in geometry- and homology-based model building, together with mutational analysis, to investigate monotopic PGTs. The pool of 15000 sequences that are analyzed include the PglC-like enzymes, as well as sequences from two other related PGTs that contain a "PglC-like" domain embedded in their larger structures (namely, the bifunctional PglB family, typified by PglB from Neisseria gonorrheae, and WbaP-like enzymes, typified by WbaP from Salmonella enterica). Including these two subfamilies of PGTs in the analysis highlights key residues conserved across all three families of small bacterial PGTs. Mutagenesis analysis of these conserved residues provides further information about the essentiality of many of these residues in catalysis. Construction of a structural model of the cytosolic globular domain utilizing three-dimensional distance constraints, provided by conservation covariance analysis, provides additional insight into the catalytic core of these families of small bacterial PGT enzymes.


Assuntos
Campylobacter jejuni/enzimologia , Glicosiltransferases/metabolismo , Fosfoproteínas/metabolismo , Domínio Catalítico , Glicosiltransferases/química , Glicosiltransferases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosfoproteínas/química , Fosfoproteínas/genética
9.
Nat Protoc ; 10(5): 733-55, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25855957

RESUMO

FTMap is a computational mapping server that identifies binding hot spots of macromolecules-i.e., regions of the surface with major contributions to the ligand-binding free energy. To use FTMap, users submit a protein, DNA or RNA structure in PDB (Protein Data Bank) format. FTMap samples billions of positions of small organic molecules used as probes, and it scores the probe poses using a detailed energy expression. Regions that bind clusters of multiple probe types identify the binding hot spots in good agreement with experimental data. FTMap serves as the basis for other servers, namely FTSite, which is used to predict ligand-binding sites, FTFlex, which is used to account for side chain flexibility, FTMap/param, used to parameterize additional probes and FTDyn, for mapping ensembles of protein structures. Applications include determining the druggability of proteins, identifying ligand moieties that are most important for binding, finding the most bound-like conformation in ensembles of unliganded protein structures and providing input for fragment-based drug design. FTMap is more accurate than classical mapping methods such as GRID and MCSS, and it is much faster than the more-recent approaches to protein mapping based on mixed molecular dynamics. By using 16 probe molecules, the FTMap server finds the hot spots of an average-size protein in <1 h. As FTFlex performs mapping for all low-energy conformers of side chains in the binding site, its completion time is proportionately longer.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Proteínas/metabolismo , Sítios de Ligação , Bases de Dados de Proteínas , Internet , Ligantes , Sondas Moleculares , Conformação Proteica
10.
Proc Natl Acad Sci U S A ; 112(20): E2585-94, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25918377

RESUMO

Fragment-based drug discovery (FBDD) relies on the premise that the fragment binding mode will be conserved on subsequent expansion to a larger ligand. However, no general condition has been established to explain when fragment binding modes will be conserved. We show that a remarkably simple condition can be developed in terms of how fragments coincide with binding energy hot spots--regions of the protein where interactions with a ligand contribute substantial binding free energy--the locations of which can easily be determined computationally. Because a substantial fraction of the free energy of ligand binding comes from interacting with the residues in the energetically most important hot spot, a ligand moiety that sufficiently overlaps with this region will retain its location even when other parts of the ligand are removed. This hypothesis is supported by eight case studies. The condition helps identify whether a protein is suitable for FBDD, predicts the size of fragments required for screening, and determines whether a fragment hit can be extended into a higher affinity ligand. Our results show that ligand binding sites can usefully be thought of in terms of an anchor site, which is the top-ranked hot spot and dominates the free energy of binding, surrounded by a number of weaker satellite sites that confer improved affinity and selectivity for a particular ligand and that it is the intrinsic binding potential of the protein surface that determines whether it can serve as a robust binding site for a suitably optimized ligand.


Assuntos
Descoberta de Drogas/métodos , Ligantes , Modelos Biológicos , Fragmentos de Peptídeos/metabolismo , Sítios de Ligação/genética , Sequência Conservada/genética , Fragmentos de Peptídeos/genética , Ligação Proteica
11.
RNA ; 21(2): 164-71, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25519487

RESUMO

Small RNA sequencing can be used to gain an unprecedented amount of detail into the microRNA transcriptome. The relatively high cost and low throughput of sequencing bases technologies can potentially be offset by the use of multiplexing. However, multiplexing involves a trade-off between increased number of sequenced samples and reduced number of reads per sample (i.e., lower depth of coverage). To assess the effect of different sequencing depths owing to multiplexing on microRNA differential expression and detection, we sequenced the small RNA of lung tissue samples collected in a clinical setting by multiplexing one, three, six, nine, or 12 samples per lane using the Illumina HiSeq 2000. As expected, the numbers of reads obtained per sample decreased as the number of samples in a multiplex increased. Furthermore, after normalization, replicate samples included in distinct multiplexes were highly correlated (R > 0.97). When detecting differential microRNA expression between groups of samples, microRNAs with average expression >1 reads per million (RPM) had reproducible fold change estimates (signal to noise) independent of the degree of multiplexing. The number of microRNAs detected was strongly correlated with the log2 number of reads aligning to microRNA loci (R = 0.96). However, most additional microRNAs detected in samples with greater sequencing depth were in the range of expression which had lower fold change reproducibility. These findings elucidate the trade-off between increasing the number of samples in a multiplex with decreasing sequencing depth and will aid in the design of large-scale clinical studies exploring microRNA expression and its role in disease.


Assuntos
MicroRNAs/metabolismo , Perfilação da Expressão Gênica , Humanos , Pulmão/metabolismo , MicroRNAs/genética , Análise de Sequência de RNA , Transcriptoma
12.
Cancer Prev Res (Phila) ; 4(6): 803-17, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21636547

RESUMO

Cigarette smoke creates a molecular field of injury in epithelial cells that line the respiratory tract. We hypothesized that transcriptome sequencing (RNA-Seq) will enhance our understanding of the field of molecular injury in response to tobacco smoke exposure and lung cancer pathogenesis by identifying gene expression differences not interrogated or accurately measured by microarrays. We sequenced the high-molecular-weight fraction of total RNA (>200 nt) from pooled bronchial airway epithelial cell brushings (n = 3 patients per pool) obtained during bronchoscopy from healthy never smoker (NS) and current smoker (S) volunteers and smokers with (C) and without (NC) lung cancer undergoing lung nodule resection surgery. RNA-Seq libraries were prepared using 2 distinct approaches, one capable of capturing non-polyadenylated RNA (the prototype NuGEN Ovation RNA-Seq protocol) and the other designed to measure only polyadenylated RNA (the standard Illumina mRNA-Seq protocol) followed by sequencing generating approximately 29 million 36 nt reads per pool and approximately 22 million 75 nt paired-end reads per pool, respectively. The NuGEN protocol captured additional transcripts not detected by the Illumina protocol at the expense of reduced coverage of polyadenylated transcripts, while longer read lengths and a paired-end sequencing strategy significantly improved the number of reads that could be aligned to the genome. The aligned reads derived from the two complementary protocols were used to define the compendium of genes expressed in the airway epithelium (n = 20,573 genes). Pathways related to the metabolism of xenobiotics by cytochrome P450, retinol metabolism, and oxidoreductase activity were enriched among genes differentially expressed in smokers, whereas chemokine signaling pathways, cytokine-cytokine receptor interactions, and cell adhesion molecules were enriched among genes differentially expressed in smokers with lung cancer. There was a significant correlation between the RNA-Seq gene expression data and Affymetrix microarray data generated from the same samples (P < 0.001); however, the RNA-Seq data detected additional smoking- and cancer-related transcripts whose expression was were either not interrogated by or was not found to be significantly altered when using microarrays, including smoking-related changes in the inflammatory genes S100A8 and S100A9 and cancer-related changes in MUC5AC and secretoglobin (SCGB3A1). Quantitative real-time PCR confirmed differential expression of select genes and non-coding RNAs within individual samples. These results demonstrate that transcriptome sequencing has the potential to provide new insights into the biology of the airway field of injury associated with smoking and lung cancer. The measurement of both coding and non-coding transcripts by RNA-Seq has the potential to help elucidate mechanisms of response to tobacco smoke and to identify additional biomarkers of lung cancer risk and novel targets for chemoprevention.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Neoplasias Pulmonares/etiologia , RNA Mensageiro/genética , Fumar/efeitos adversos , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Neoplásico/genética , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Virus Res ; 150(1-2): 22-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20172001

RESUMO

During infection, viruses hijack various host cell components and programs for their amplification, among which is the canonical ERK signaling pathway, mainly consisting of three tiered serine/threonine kinases, Raf, MEK and ERK. MEK1 and MEK2 are two isoforms of the kinase operating immediately upstream of ERK, and connecting Raf and ERK by phosphorylating ERK. Previous studies have suggested that different isoforms of MEK have distinct biological functions, although their in vitro kinase function may be redundant. However, little is known about the isoform-specific effects of these kinases on viral propagation. In this study, we showed that herpes simplex virus type 2 (HSV-2) infection of human embryonic kidney (HEK) 293 cells induced a sustained activation of ERK1/2. Inhibition of this ERK activation by U0126, a specific inhibitor of MEK1/2, severely impaired virus production. A similar reduction of virus production was also seen following transfection of cells with siRNAs for MEK1/2. Interestingly, a specific knockdown of MEK1 with siRNAs caused a marked inhibition of viral titers, viral proteins and virus-induced cytopathic effect (CPE), whereas silencing MEK2 had little effect. Therefore, our results demonstrate that MEK1 and MEK2 act differently and that HSV-2 hijacks host MEK1 for its own amplification. To our knowledge, this is the first report showing inhibition of HSV-2 replication by targeting human MEK1. This study also suggests that MEK1 could be a potential target for anti-HSV-2 therapy, which may minimize damage to the host cells engendered by targeting both MEK1 and MEK2.


Assuntos
Herpesvirus Humano 2/fisiologia , Interações Hospedeiro-Patógeno , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Replicação Viral , Butadienos/farmacologia , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Técnicas de Inativação de Genes , Inativação Gênica , Humanos , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 2/genética , Nitrilas/farmacologia , RNA Interferente Pequeno/metabolismo
14.
J Biol Chem ; 283(46): 31429-37, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18775988

RESUMO

Raf kinases are essential for regulating cell proliferation, survival, and tumorigenesis. However, the mechanisms by which Raf is activated are still incompletely understood. Phosphorylation plays a critical role in Raf activation in response to mitogens. The present study characterizes phosphorylation of Ser338, a crucial event for Raf-1 activation. Here we report that mutation of Lys375 to Met diminishes phosphorylation of Ser338 on both wild type Raf-1 in cells treated with epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA) and a constitutively active mutant in which Tyr340/Tyr341 are replaced by 2 aspartic acids, a conserved substitution present in natural B-Raf. The loss of Ser338 phosphorylation in these Raf mutants is not engendered by a mutation-induced conformational change, inasmuch as mutation of another site (Ser471 to Ala) in the activation segment also abolishes Ser338 phosphorylation, whereas both the kinase-dead mutants of Raf-1 are phosphorylated well by active Pak1. Furthermore, our data demonstrate that EGF-stimulated phosphorylation of Ser338 is inhibited by Sorafenib, a Raf kinase inhibitor, but not by the MEK inhibitor U0126. Interestingly, a kinase-dead mutation and Sorafenib also markedly reduce phosphorylation of Ser445 on B-Raf, a site equivalent to Raf-1 Ser338. Finally, our data reveal that Ser338 is phosphorylated on inactive Raf-1 by an active mutant of Raf-1 when they are dimerized in cells and that artificial dimerization of Raf-1 causes Ser338 phosphorylation, accompanied by activation of ERK1/2. Altogether, our data suggest that Ser338 on Raf-1 is autophosphorylated in response to mitogens.


Assuntos
Fosfosserina/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Humanos , Mutação/efeitos dos fármacos , Multimerização Proteica , Proteínas Proto-Oncogênicas c-raf/genética , Quinases Ativadas por p21/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA