Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Adv Sci (Weinh) ; 11(3): e2306535, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37973552

RESUMO

BRAF V600E attracts wide attention in the treatment of colorectal cancer (CRC) as stratifying and predicting a refractory classification of CRC. Recent evidence indicates that Wnt/ß-catenin signaling is broadly activated and participates in the refractoriness of BRAF V600E CRC, but the underlying molecular mechanism needs to be elucidated. Here, heat shock 70 kDa protein 8 (HSPA8), an essential regulator in chaperone-mediated autophagy (CMA), is identified as a potential therapeutic target for advanced BRAF V600E CRC. These results show that HSPA8 is transcriptionally upregulated in BRAF V600E CRC, which promotes CMA-dependent degradation of caveolin-1 (CAV1) to release ß-catenin into the nucleus and thus activates the Wnt/ß-catenin pathway, contributing to metastasis and progression of BRAF V600E CRC. Of note, HSPA8 directly interacts with the KIFSN motif on CAV1, the interaction can be enhanced by p38 MAPK-mediated CAV1 S168 phosphorylation. Furthermore, pharmacological targeting HSPA8 by VER155008 exhibits synergistic effects with BRAF inhibitors on CRC mouse models. In summary, these findings discover the important role of the HSPA8/CAV1/ß-catenin axis in the development of refractory BRAF V600E CRC and highlight HSPA8 as a predictive biomarker and therapeutic target in clinical practice.


Assuntos
Autofagia Mediada por Chaperonas , Neoplasias Colorretais , Animais , Camundongos , beta Catenina/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 1/uso terapêutico , Neoplasias Colorretais/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/uso terapêutico
2.
MedComm (2020) ; 4(6): e427, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045829

RESUMO

Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.

3.
J Transl Med ; 21(1): 612, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689664

RESUMO

Distant metastasis remains a leading cause of mortality among patients with colorectal cancer (CRC). Organotropism, referring to the propensity of metastasis to target specific organs, is a well-documented phenomenon in CRC, with the liver, lungs, and peritoneum being preferred sites. Prior to establishing premetastatic niches within host organs, CRC cells secrete substances that promote metastatic organotropism. Given the pivotal role of organotropism in CRC metastasis, a comprehensive understanding of its molecular underpinnings is crucial for biomarker-based diagnosis, innovative treatment development, and ultimately, improved patient outcomes. In this review, we focus on metabolic reprogramming, tumor-derived exosomes, the immune system, and cancer cell-organ interactions to outline the molecular mechanisms of CRC organotropic metastasis. Furthermore, we consider the prospect of targeting metastatic organotropism for CRC therapy.


Assuntos
Neoplasias Colorretais , Exossomos , Humanos , Terapias em Estudo , Comunicação Celular , Fígado , Neoplasias Colorretais/terapia
4.
Liver Int ; 43(4): 928-944, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36776105

RESUMO

BACKGROUND AND AIMS: Human hepatocellular carcinoma (HCC) is an aggressive malignancy with poor clinical outcomes. There are limited therapeutic options for those diagnosed with terminal HCC and therefore incorporating novel agents into standard-of-care regimens is urgently needed. In contrast to de novo drug discovery, the strategy of repurposing compounds initially designed to treat animals might yield substantial advantages in terms of efficacy and safety. Given the evidence for the clinical efficacy of toceranib phosphate (TOC) against canine carcinomas, we aimed to investigate its therapeutic effect on human HCC. METHODS: The antitumor effects of TOC were evaluated using human HCC cell lines and cell-line-derived xenograft models. Changes in autophagic response upon TOC exposure were quantified through immunoblotting and immunofluorescence analysis. The role of TOC-triggered autophagy was addressed via pharmacological and genetic inhibition. RESULTS: We demonstrated TOC exhibited potent antitumor activity against human HCC cells by stimulating apoptosis in vitro and in vivo by a concomitant increase in autophagic flux. Blocking the TOC-triggered autophagy inhibited cellular proliferation and decreased tumour burden, indicating a protective role of autophagy against TOC-mediated HCC cell death. This role played by TOC-induced autophagy was further linked to the inactivation of the Akt/mTOR pathway that could be attributed to the upregulation of Cyr61. Moreover, treatment with sorafenib plus TOC resulted in pronounced synergistic effects on HCC cells. CONCLUSION: Our results elucidate a newly identified therapeutic potential of TOC in treating HCC, sparking a growing interest in repurposing such canine drugs for human use.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Cães , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Autofagia/genética
5.
Signal Transduct Target Ther ; 8(1): 65, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36788227

RESUMO

The single-nucleotide polymorphism (SNP) of p53, in particular the codon 72 variants, has recently been implicated as a critical regulator in tumor progression. However, the underlying mechanism remains elusive. Here we found that cancer cells carrying codon 72-Pro variant of p53 showed impaired metastatic potential upon serine supplementation. Proteome-wide mapping of p53-interacting proteins uncovered a specific interaction of the codon 72 proline variant (but not p5372R) with phosphoserine aminotransferase 1 (PSAT1). Interestingly, p5372P-PSAT1 interaction resulted in dissociation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) that otherwise bound to p5372P, leading to subsequent nuclear translocation of PGC-1α and activation of oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle. Depletion of PSAT1 restored p5372P-PGC-1α interaction and impeded the OXPHOS and TCA function, resulting in mitochondrial dysfunction and metastasis suppression. Notably, pharmacological targeting the PSAT1-p5372P interaction by aminooxyacetic acid (AOA) crippled the growth of liver cancer cells carrying the p5372P variant in both in vitro and patient-derived xenograft models. Moreover, AOA plus regorafenib, an FDA-proved drug for hepatocellular carcinoma and colorectal cancer, achieved a better anti-tumor effect on tumors carrying the p5372P variant. Therefore, our findings identified a gain of function of the p5372P variant on mitochondrial function and provided a promising precision strategy to treat tumors vulnerable to p5372P-PSAT1 perturbation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metástase Neoplásica , Transaminases , Proteína Supressora de Tumor p53 , Humanos , Códon , Polimorfismo de Nucleotídeo Único , Proteína Supressora de Tumor p53/genética , Animais , Transaminases/genética , Metástase Neoplásica/prevenção & controle
6.
ACS Appl Mater Interfaces ; 15(1): 452-468, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538368

RESUMO

Pyroptosis, as a novel mode of cell death, has been proven to have impressive antitumor effects. Dying cells undergoing pyroptosis can elicit antitumor immunity by the release of tumor-associated antigens (TAAs) and damage-associated molecular patterns (DAMPs). Accordingly, developing an effective, stable, and controllable nanoplatform that can promote these two side effects is a promising option for cancer therapy. In this study, we designed a carrier-free chemo-photodynamic nanoplatform (A-C/NPs) using a co-assembly strategy with cytarabine (Ara-C) and chlorin e6 (Ce6) to induce pyroptosis and a subsequent immune response against breast cancer. Mechanistically, A-C/NPs can trigger GSDME-mediated pyroptosis in a controllable manner through reactive oxygen species (ROS) accumulation, causing immunogenic cell death (ICD), in which dying cells release high-mobility group box 1 (HMGB1), adenosine triphosphate (ATP), and calcitonin (CRT). Additionally, Ara-C can stimulate the maturation of cytotoxic T lymphocytes to act synergistically with Ce6-mediated immunogenic cell death (ICD), collectively augmenting the anticancer effect of A-C/NPs. The A-C/NPs showed excellent suppressive effects on the growth of orthotopic, abscopal, and recurrent tumors in a breast cancer mouse model. The chemo-photodynamic therapy (PDT) using the proposed nanomedicine strategy could be a novel strategy for triggering pyroptosis and improving the global anticancer immune response.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Piroptose , Citarabina , Imunidade , Linhagem Celular Tumoral
7.
Small ; 19(2): e2205354, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399643

RESUMO

Durable glioblastoma multiforme (GBM) management requires long-term chemotherapy after surgery to eliminate remaining cancerous tissues. Among chemotherapeutics, temozolomide is considered as the first-line drug for GBM therapy, but the treatment outcome is not satisfactory. Notably, regorafenib, an oral multi-kinase inhibitor, has been reported to exert a markedly superior effect on GBM suppression compared with temozolomide. However, poor site-specific delivery and bioavailability significantly restrict the efficient permeability of regorafenib to brain lesions and compromise its treatment efficacy. Therefore, human H-ferritin (HFn), regorafenib, and Cu2+ are rationally designed as a brain-targeted nanoplatform (HFn-Cu-REGO NPs), fulfilling the task of site-specific delivery and manipulating autophagy and cuproptosis against GBM. Herein, HFn affords a preferential accumulation capacity to GBM due to transferrin receptor 1 (TfR1)-mediated active targeting and pH-responsive delivery behavior. Moreover, regorafenib can inhibit autophagosome-lysosome fusion, resulting in lethal autophagy arrest in GBM cells. Furthermore, Cu2+ not only facilitates the encapsulation of regorafenib to HFn through coordination interaction but also disturbs copper homeostasis for triggering cuproptosis, resulting in a synergistical effect with regorafenib-mediated lethal autophagy arrest against GBM. Therefore, this work may broaden the clinical application scope of Cu2+ and regorafenib in GBM treatment via modulating autophagy and cuproptosis.


Assuntos
Apoptose , Neoplasias Encefálicas , Glioblastoma , Humanos , Apoferritinas , Autofagia , Encéfalo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Cobre
8.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36558995

RESUMO

Polyphenol, one of the major components that exert the therapeutic effect of Chinese herbal medicine (CHM), comprises several categories, including flavonoids, phenolic acids, lignans and stilbenes, and has long been studied in oncology due to its significant efficacy against cancers in vitro and in vivo. Recent evidence has linked this antitumor activity to the role of polyphenols in the modulation of redox homeostasis (e.g., pro/antioxidative effect) in cancer cells. Dysregulation of redox homeostasis could lead to the overproduction of reactive oxygen species (ROS), resulting in oxidative stress, which is essential for many aspects of tumors, such as tumorigenesis, progression, and drug resistance. Thus, investigating the ROS-mediated anticancer properties of polyphenols is beneficial for the discovery and development of novel pharmacologic agents. In this review, we summarized these extensively studied polyphenols and discussed the regulatory mechanisms related to the modulation of redox homeostasis that are involved in their antitumor property. In addition, we discussed novel technologies and strategies that could promote the development of CHM-derived polyphenols to improve their versatile anticancer properties, including the development of novel delivery systems, chemical modification, and combination with other agents.

9.
EMBO Mol Med ; 14(12): e16082, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36321555

RESUMO

Metformin, a well-known antidiabetic drug, has been repurposed for cancer treatment; however, recently observed drug resistance and tumor metastasis have questioned its further application. Here, we found that long-term metformin exposure led to metabolic adaptation of hepatocellular carcinoma (HCC) cells, which was characterized by an obvious epithelial-mesenchymal transition (EMT) phenotype and compensatory elevation of oxidative phosphorylation (OXPHOS). TOMM34, a translocase of the outer mitochondrial membrane, was upregulated to promote tumor metastasis in response to metformin-induced metabolic stress. Mechanistically, TOMM34 interacted with ATP5B to preserve F1 FO -ATPase activity, which conferred mitochondrial OXPHOS and ATP production. This metabolic preference for OXPHOS suggested a large requirement of energy supply by cancer cells to survive and spread in response to therapeutic stress. Notably, disturbing the interaction between TOMM34 and ATP5B using Gboxin, a specific OXPHOS inhibitor, increased sensitivity to metformin and suppressed tumor progression both in vitro and in vivo. Overall, this study demonstrates a molecular link of the TOMM34/ATP5B-ATP synthesis axis during metformin adaptation and provides promising therapeutic targets for metformin sensitization in cancer treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metformina , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Linhagem Celular , Trifosfato de Adenosina , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
10.
Front Oncol ; 12: 1008027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313710

RESUMO

Platinum-based drugs (PBDs), including cisplatin, carboplatin, and oxaliplatin, have been widely used in clinical practice as mainstay treatments for various types of cancer. Although there is firm evidence of notable achievements with PBDs in the management of cancers, the acquisition of resistance to these agents is still a major challenge to efforts at cure. The introduction of the epithelial-mesenchymal transition (EMT) concept, a critical process during embryonic morphogenesis and carcinoma progression, has offered a mechanistic explanation for the phenotypic switch of cancer cells upon PBD exposure. Accumulating evidence has suggested that carcinoma cells can enter a resistant state via induction of the EMT. In this review, we discussed the underlying mechanism of PBD-induced EMT and the current understanding of its role in cancer drug resistance, with emphasis on how this novel knowledge can be exploited to overcome PBD resistance via EMT-targeted compounds, especially those under clinical trials.

11.
Mol Cancer ; 21(1): 168, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986274

RESUMO

BACKGROUND: Hypoxia, a typical hallmark of solid tumors, exhibits an essential role in the progression of colorectal cancer (CRC), in which the dysregulation of long non-coding RNAs (lncRNAs) is frequently observed. However, the underlying mechanisms are not clearly defined. METHODS: The TCGA database was analyzed to identify differential lncRNA expression involved in hypoxia-induced CRC progression. qRT-PCR was conducted to validate the upregulation of lncRNA STEAP3-AS1 in CRC cell lines and tumor-bearing mouse and zebrafish models under hypoxia. ChIP-qRT-PCR was used to detect the transcriptional activation of STEAP3-AS1 mediated by HIF-1α. RNA-seq, fluorescent in situ hybridization, RNA pulldown, RNA immunoprecipitation, co-immunoprecipitation, immunofluorescence and immunoblot experiments were used to ascertain the involved mechanisms. Functional assays were performed in both in vitro and in vivo models to investigate the regulatory role of STEAP3-AS1/STEAP3/Wnt/ß-catenin axis in CRC proliferation and metastasis. RESULTS: Here, we identified a hypoxia-induced antisense lncRNA STEAP3-AS1 that was highly expressed in clinical CRC tissues and positively correlated with poor prognosis of CRC patients. Upregulation of lncRNA STEAP3-AS1, which was induced by HIF-1α-mediated transcriptional activation, facilitated the proliferation and metastasis of CRC cells both in vitro and in vivo. Mechanistically, STEAP3-AS1 interacted competitively with the YTH domain-containing family protein 2 (YTHDF2), a N6-methyladenosine (m6A) reader, leading to the disassociation of YTHDF2 with STEAP3 mRNA. This effect protected STEAP3 mRNA from m6A-mediated degradation, enabling the high expression of STEAP3 protein and subsequent production of cellular ferrous iron (Fe2+). Increased Fe2+ levels elevated Ser 9 phosphorylation of glycogen synthase kinase 3 beta (GSK3ß) and inhibited its kinase activity, thus releasing ß-catenin for nuclear translocation and subsequent activation of Wnt signaling to support CRC progression. CONCLUSIONS: Taken together, our study highlights the mechanisms of lncRNA STEAP3-AS1 in facilitating CRC progression involving the STEAP3-AS1/STEAP3/Wnt/ß-catenin axis, which may provide novel diagnostic biomarkers or therapeutic targets to benefit CRC treatment. Hypoxia-induced HIF-1α transcriptionally upregulates the expression of lncRNA STEAP3-AS1, which interacts competitively with YTHDF2, thus upregulating mRNA stability of STEAP3 and consequent STEAP3 protein expression. The enhanced STEAP3 expression results in production of cellular ferrous iron (Fe2+), which induces the Ser 9 phosphorylation and inactivation of GSK3ß, releasing ß-catenin for nuclear translocation and contributing to subsequent activation of Wnt signaling to promote CRC progression.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipóxia/genética , Hibridização in Situ Fluorescente , Ferro/metabolismo , Camundongos , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA , Fatores de Transcrição/genética , Via de Sinalização Wnt/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra , beta Catenina/genética , beta Catenina/metabolismo
12.
Acta Pharm Sin B ; 12(7): 3085-3102, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35865101

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by the highest mortality among carcinomas. The pathogenesis of PDAC requires elevated autophagy, inhibition of which using hydroxychloroquine has shown promise. However, current realization is impeded by its suboptimal use and unpredictable toxicity. Attempts to identify novel autophagy-modulating agents from already approved drugs offer a rapid and accessible approach. Here, using a patient-derived organoid model, we performed a comparative analysis of therapeutic responses among various antimalarial/fungal/parasitic/viral agents, through which econazole (ECON), an antifungal compound, emerged as the top candidate. Further testing in cell-line and xenograft models of PDAC validated this activity, which occurred as a direct consequence of dysfunctional autophagy. More specifically, ECON boosted autophagy initiation but blocked lysosome biogenesis. RNA sequencing analysis revealed that this autophagic induction was largely attributed to the altered expression of activation transcription factor 3 (ATF3). Increased nuclear import of ATF3 and its transcriptional repression of inhibitor of differentiation-1 (ID-1) led to inactivation of the AKT/mammalian target of rapamycin (mTOR) pathway, thus giving rise to autophagosome accumulation in PDAC cells. The magnitude of the increase in autophagosomes was sufficient to elicit ER stress-mediated apoptosis. Furthermore, ECON, as an autophagy inhibitor, exhibited synergistic effects with trametinib on PDAC. This study provides direct preclinical and experimental evidence for the therapeutic efficacy of ECON in PDAC treatment and reveals a mechanism whereby ECON inhibits PDAC growth.

13.
Antioxidants (Basel) ; 11(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740025

RESUMO

Cancer is characterized by increased oxidative stress, an imbalance between reactive oxygen species (ROS) and antioxidants. Enhanced ROS accumulation, as a result of metabolic disturbances and signaling aberrations, can promote carcinogenesis and malignant progression by inducing gene mutations and activating pro-oncogenic signaling, providing a possible rationale for targeting oxidative stress in cancer treatment. While numerous antioxidants have demonstrated therapeutic potential, their clinical efficacy in cancer remains unproven. Here, we review the rationale for, and recent advances in, pre-clinical and clinical research on antioxidant therapy in cancer, including targeting ROS with nonenzymatic antioxidants, such as NRF2 activators, vitamins, N-acetylcysteine and GSH esters, or targeting ROS with enzymatic antioxidants, such as NOX inhibitors and SOD mimics. In addition, we will offer insights into prospective therapeutic options for improving the effectiveness of antioxidant therapy, which may expand its applications in clinical cancer treatment.

14.
MedComm (2020) ; 3(2): e127, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35386842

RESUMO

Redox biology is at the core of life sciences, accompanied by the close correlation of redox processes with biological activities. Redox homeostasis is a prerequisite for human health, in which the physiological levels of nonradical reactive oxygen species (ROS) function as the primary second messengers to modulate physiological redox signaling by orchestrating multiple redox sensors. However, excessive ROS accumulation, termed oxidative stress (OS), leads to biomolecule damage and subsequent occurrence of various diseases such as type 2 diabetes, atherosclerosis, and cancer. Herein, starting with the evolution of redox biology, we reveal the roles of ROS as multifaceted physiological modulators to mediate redox signaling and sustain redox homeostasis. In addition, we also emphasize the detailed OS mechanisms involved in the initiation and development of several important diseases. ROS as a double-edged sword in disease progression suggest two different therapeutic strategies to treat redox-relevant diseases, in which targeting ROS sources and redox-related effectors to manipulate redox homeostasis will largely promote precision medicine. Therefore, a comprehensive understanding of the redox signaling networks under physiological and pathological conditions will facilitate the development of redox medicine and benefit patients with redox-relevant diseases.

15.
Gut ; 71(2): 322-332, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33632712

RESUMO

OBJECTIVE: The systemic spread of colorectal cancer (CRC) is dominated by the portal system and exhibits diverse patterns of metastasis without systematical genomic investigation. Here, we evaluated the genomic evolution of CRC with multiorgan metastases using multiregion sequencing. DESIGN: Whole-exome sequencing was performed on multiple regions (n=74) of matched primary tumour, adjacent non-cancerous mucosa, liver metastasis and lung metastasis from six patients with CRC. Phylogenetic reconstruction and evolutionary analyses were used to investigate the metastatic seeding pattern and clonal origin. Recurrent driver gene mutations were analysed across patients and validated in two independent cohorts. Metastatic assays were performed to examine the effect of the novel driver gene on the malignant behaviour of CRC cells. RESULTS: Based on the migration patterns and clonal origins, three models were revealed (sequential, branch-off and diaspora), which not only supported the anatomic assumption that CRC cells spread to lung after clonally expanding in the liver, but also illustrated the direct seeding of extrahepatic metastases from primary tumours independently. Unlike other cancer types, polyphyletic seeding occurs in CRC, which may result in late metastases with intermetastatic driver gene heterogeneity. In cases with rapid dissemination, we found recurrent trunk loss-of-function mutations in ZFP36L2, which is enriched in metastatic CRC and associated with poor overall survival. CRISPR/Cas9-mediated knockout of ZFP36L2 enhances the metastatic potential of CRC cells. CONCLUSION: Our results provide genomic evidence for metastatic evolution and indicate that biopsy/sequencing of metastases may be considered for patients with CRC with multiorgan or late postoperative metastasis.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/secundário , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Mutação/genética , Fatores de Transcrição/genética , China , Estudos de Coortes , Evolução Molecular , Humanos , Neoplasias Hepáticas/genética , Neoplasias Pulmonares/genética , Modelos Genéticos , Sequenciamento do Exoma
16.
Cell Mol Gastroenterol Hepatol ; 13(4): 1223-1242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34952201

RESUMO

BACKGROUND & AIMS: Latent metastasis of colorectal cancer (CRC) frequently develops months or years after primary surgery, followed by adjuvant therapies, and may progress rapidly even with targeted therapy administered, but the underlying mechanism remains unclear. Here, we aim to explore the molecular basis for the aggressive behavior of latent metastasis in CRC. METHODS: Transcriptional profiling and pathway enrichment analysis of paired primary and metastatic tumor samples were performed. The underlying mechanisms of pleckstrin homology-like domain, family B, member 2 (PHLDB2) in CRC were investigated by RNA immunoprecipitation assay, immunohistochemistry, mass spectrometry analysis, and Duolink in situ proximity ligation assay (Sigma-Aldrich, Shanghai, China). The efficacy of targeting PHLDB2 in cetuximab treatment was elucidated in CRC cell lines and mouse models. RESULTS: Based on the transcriptional profile of paired primary and metastatic tumor samples, we identified PHLDB2 as a potential regulator in latent liver metastasis. A detailed mechanistic study showed that chemotherapeutic agent-induced oxidative stress promotes methyltransferase-like 14 (METTL14)-mediated N6-methyladenosine modification of PHLDB2 messenger RNA, facilitating its protein expression. Up-regulated PHLDB2 stabilizes epidermal growth factor receptor (EGFR) and promotes its nuclear translocation, which in turn results in EGFR signaling activation and consequent cetuximab resistance. Moreover, Arg1163 (R1163) of PHLDB2 is crucial for interaction with EGFR, and the R1163A mutation abrogates its regulatory function in EGFR signaling. CONCLUSIONS: PHLDB2 plays a crucial role in cetuximab resistance and is proposed to be a potential target for the treatment of CRC.


Assuntos
Antineoplásicos , Proteínas de Transporte/metabolismo , Neoplasias Colorretais , Proteínas de Membrana/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cetuximab/farmacologia , Cetuximab/uso terapêutico , China , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Camundongos
17.
Cell Rep ; 37(9): 110069, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34852234

RESUMO

Cancer cells utilize rapidly elevated cellular antioxidant programs to accommodate chemotherapy-induced oxidative stress; however, the underlying mechanism remains largely unexplored. Here we screen redox-sensitive effectors as potential therapeutic targets for colorectal cancer (CRC) treatment and find that cyclophilin A (CypA) is a compelling candidate. Our results show that CypA forms an intramolecular disulfide bond between Cys115 and Cys161 upon oxidative stress and the oxidized cysteines in CypA are recycled to a reduced state by peroxiredoxin-2 (PRDX2). Furthermore, CypA reduces cellular reactive oxygen species levels and increases CRC cell survival under insults of H2O2 and chemotherapeutics through a CypA-PRDX2-mediated antioxidant apparatus. Notably, CypA is upregulated in chemoresistant CRC samples, which predicts poor prognosis. Moreover, targeting CypA by cyclosporine A exhibits promising efficacy against chemoresistant CRC when combined with chemotherapeutics. Collectively, our findings highlight CypA as a component of cellular noncanonical antioxidant defense and as a potential druggable therapeutic target to ameliorate CRC chemoresistance.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antioxidantes/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Ciclofilina A/metabolismo , Resistencia a Medicamentos Antineoplásicos , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Adulto , Idoso , Animais , Apoptose , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ciclofilina A/genética , Feminino , Fluoruracila/administração & dosagem , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Oxaliplatina/administração & dosagem , Oxirredução , Peroxirredoxinas/genética , Prognóstico , Espécies Reativas de Oxigênio , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188623, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34481016

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Despite significant progress that has been made in therapies against CRC over the past decades, drug resistance is still a major limitation in CRC treatment. Numerous investigations have unequivocally shown that epigenetic regulation plays an important role in CRC drug resistance because of the high rate of epigenetic alterations in multiple genes during cancer development or drug treatment. Furthermore, the reversibility of epigenetic alterations provides novel therapeutic strategies to overcome drug resistance using small molecules, which can target non-coding RNAs or reverse histone modification and DNA methylation. In this review, we discuss epigenetic regulation in CRC drug resistance and the possible role of preventing or reversing CRC drug resistance using epigenetic therapy in CRC treatment.


Assuntos
Neoplasias Colorretais/genética , Metilação de DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/genética , Histonas/genética , Humanos , Transdução de Sinais
19.
Front Oncol ; 11: 657546, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996581

RESUMO

Metastasis is the end stage of cancer progression and the direct cause of most cancer-related deaths. The spreading of cancer cells from the primary site to distant organs is a multistep process known as the metastatic cascade, including local invasion, intravasation, survival in the circulation, extravasation, and colonization. Each of these steps is driven by the acquisition of genetic and/or epigenetic alterations within cancer cells, leading to subsequent transformation of metastatic cells. Epithelial-mesenchymal transition (EMT), a cellular process mediating the conversion of cell from epithelial to mesenchymal phenotype, and its reverse transformation, termed mesenchymal-epithelial transition (MET), together endow metastatic cells with traits needed to generate overt metastases in different scenarios. The dynamic shift between these two phenotypes and their transitional state, termed partial EMT, emphasizes the plasticity of EMT. Recent advances attributed this plasticity to epigenetic regulation, which has implications for the therapeutic targeting of cancer metastasis. In this review, we will discuss the association between epigenetic events and the multifaceted nature of EMT, which may provide insights into the steps of the cancer metastatic cascade.

20.
Oncogene ; 40(19): 3394-3407, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33875786

RESUMO

Poorly differentiated colorectal cancer (CRC) is characterized by aggressive invasion and stromal fibroblast activation, which results in rapid progression and poor therapeutic consequences. However, the regulatory mechanism involved remains unclear. Here, we showed that ZNF37A, a member of KRAB-ZFP family, was upregulated in poorly differentiated CRCs and associated with tumor metastasis. ZNF37A enhanced the metastatic potential of multiple CRC cell lines and promoted distant metastasis in an orthotopic CRC model. Further investigation attributed the ZNF37A-exacerbated metastasis to increased extracellular TGF-ß and the consequent activation of cancer-associated fibroblasts (CAFs) in tumor microenvironment (TME). Mechanistically, ZNF37A formed a complex with KAP1 and bound to the promoter of THSD4, a TME modulator, to suppress its transcription, which is required for ZNF37A-mediated TGF-ß activation and CRC metastasis. Collectively, our study indicates that ZNF37A promotes TGF-ß signaling in CRC cells and activates CAFs by transcriptionally repressing THSD4 to drive CRC metastasis, implicating ZNF37A as a potential biomarker for CRC differentiation and progression.


Assuntos
Proteínas ADAM/metabolismo , Neoplasias Colorretais/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas ADAM/genética , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Xenoenxertos , Humanos , Fatores de Transcrição Kruppel-Like/genética , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Serina Endopeptidases , Taxa de Sobrevida , Fator de Crescimento Transformador beta/genética , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA