RESUMO
BACKGROUND: The prevalence of ectopic pregnancy after assisted reproduction is notably high, posing a significant threat to the life safety of pregnant women. Discrepancies in published results and the lack of a comprehensive description of all risk factors have led to ongoing uncertainties concerning ectopic pregnancy after assisted reproduction. OBJECTIVE: This study aimed to understand the risk factors for ectopic pregnancy after in vitro fertilization-embryo transfer in the Chinese population and provide a reference for targeted prevention and treatment. METHODS: A comprehensive search of the China National Knowledge Infrastructure, Wang fang Database, China Science Technology Journal Database, Chinese Biomedical Literature Database, PubMed, Web of Science, and Embase was conducted to identify relevant literature on the risk factors for ectopic pregnancy in Chinese women after assisted reproductive technology in Chinese women. A meta-analysis of the included studies was performed using Stata17. RESULTS: Overall, 34 articles were included in the analysis. The risk factors for ectopic pregnancy after in vitro fertilization-embryo transfer in the Chinese population included a thin endometrium on the day of HCG administration and embryo transplantation, a history of ectopic pregnancy, secondary infertility, a history of induced abortion, polycystic ovary syndrome, decreased ovarian reserve, tubal factor infertility, cleavage stage embryo transfer, fresh embryo transfer, artificial cycle protocols, elevated estradiol levels on the day of human chorionic gonadotropin administration, a history of tubal surgery, two or more number of embryo transfers, previous pregnancy history, and a history of pelvic surgery. CONCLUSION: This study clarified the factors influencing ectopic pregnancy after in vitro fertilization and embryo transfer in the Chinese population, focusing on high-risk groups. Targeted and personalized intervention measures should be adopted to prevent and detect the disease early to reduce its incidence and harm. TRIAL REGISTRATION: The protocol for this view was registered in PROSPERO (CRD42023414710).
Assuntos
Infertilidade Feminina , Gravidez Ectópica , Gravidez , Feminino , Humanos , Gravidez Ectópica/epidemiologia , Gravidez Ectópica/etiologia , Transferência Embrionária/efeitos adversos , Fertilização in vitro/efeitos adversos , Fatores de Risco , Taxa de Gravidez , Infertilidade Feminina/etiologia , Estudos RetrospectivosRESUMO
As a fundamental metabolic pathway, autophagy plays important roles in plant growth and development, particularly under stress conditions. A set of autophagy-related (ATG) proteins is recruited for the formation of a double-membrane autophagosome. Among them, the essential roles of ATG2, ATG18, and ATG9 have been well established in plant autophagy via genetic analysis; however, the underlying molecular mechanism for ATG2 in plant autophagosome formation remains poorly understood. In this study, we focused on the specific role of ATG2 in the trafficking of ATG18a and ATG9 during autophagy in Arabidopsis (Arabidopsis thaliana). Under normal conditions, YFP-ATG18a proteins are partially localized on late endosomes and translocated to ATG8e-labeled autophagosomes upon autophagic induction. Real-time imaging analysis revealed sequential recruitment of ATG18a on the phagophore membrane, showing that ATG18a specifically decorated the closing edges and finally disassociated from the completed autophagosome. However, in the absence of ATG2, most of the YFP-ATG18a proteins are arrested on autophagosomal membranes. Ultrastructural and 3D tomography analysis showed that unclosed autophagosome structures are accumulated in the atg2 mutant, displaying direct connections with the endoplasmic reticulum membrane and vesicular structures. Dynamic analysis of ATG9 vesicles suggested that ATG2 depletion also affects the association between ATG9 vesicles and the autophagosomal membrane. Furthermore, using interaction and recruitment analysis, we mapped the interaction relationship between ATG2 and ATG18a, implying a possible role of ATG18a in recruiting ATG2 and ATG9 to the membrane. Our findings unveil a specific role of ATG2 in coordinating ATG18a and ATG9 trafficking to mediate autophagosome closure in Arabidopsis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Saccharomyces cerevisiae , Autofagossomos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/análise , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Membrana/metabolismo , Autofagia/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Arabidopsis/metabolismoRESUMO
Macroautophagy/autophagy, an evolutionarily conserved degradative process essential for cell homeostasis and development in eukaryotes, involves autophagosome formation and fusion with a lysosome/vacuole. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play important roles in regulating autophagy in mammals and yeast, but relatively little is known about SNARE function in plant autophagy. Here we identified and characterized two Arabidopsis SNAREs, AT4G15780/VAMP724 and AT1G04760/VAMP726, involved in plant autophagy. Phenotypic analysis showed that mutants of VAMP724 and VAMP726 are sensitive to nutrient-starved conditions. Live-cell imaging on mutants of VAMP724 and VAMP726 expressing YFP-ATG8e showed the formation of abnormal autophagic structures outside the vacuoles and compromised autophagic flux. Further immunogold transmission electron microscopy and electron tomography (ET) analysis demonstrated a direct connection between the tubular autophagic structures and the endoplasmic reticulum (ER) in vamp724-1 vamp726-1 double mutants. Further transient co-expression, co-immunoprecipitation and double immunogold TEM analysis showed that ATG9 (autophagy related 9) interacts and colocalizes with VAMP724 and VAMP726 in ATG9-positive vesicles during autophagosome formation. Taken together, VAMP724 and VAMP726 regulate autophagosome formation likely working together with ATG9 in Arabidopsis.Abbreviations: ATG, autophagy related; BTH, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester; Conc A, concanamycin A; EM, electron microscopy; ER, endoplasmic reticulum; FRET, Förster/fluorescence resonance energy transfer; MS, Murashige and Skoog; MVB, multivesicular body; PAS, phagophore assembly site; PM, plasma membrane; PVC, prevacuolar compartment; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor; TEM, transmission electron microscopy; TGN, trans-Golgi network; WT, wild-type.
Assuntos
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Autofagossomos/metabolismo , Autofagia/fisiologia , Macroautofagia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Saccharomyces cerevisiae/metabolismo , Endossomos/metabolismo , Proteínas SNARE/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Lipid droplets (LDs) stored during seed development are mobilized and provide essential energy and lipids to support seedling growth upon germination. Triacylglycerols (TAGs) are the main neutral lipids stored in LDs. The lipase SUGAR DEPENDENT 1 (SDP1), which hydrolyzes TAGs in Arabidopsis thaliana, is localized on peroxisomes and traffics to the LD surface through peroxisomal extension, but the underlying mechanism remains elusive. Here, we report a previously unknown function of a plant-unique endosomal sorting complex required for transport (ESCRT) component FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1) in regulating peroxisome/SDP1-mediated LD turnover in Arabidopsis. We showed that LD degradation was impaired in germinating free1 mutant; moreover, the tubulation of SDP1- or PEROXIN 11e (PEX11e)-marked peroxisomes and the migration of SDP1-positive peroxisomes to the LD surface were altered in the free1 mutant. Electron tomography analysis showed that peroxisomes failed to form tubules to engulf LDs in free1, unlike in the wild-type. FREE1 interacted directly with both PEX11e and SDP1, suggesting that these interactions may regulate peroxisomal extension and trafficking of the lipase SDP1 to LDs. Taken together, our results demonstrate a pivotal role for FREE1 in LD degradation in germinating seedlings via regulating peroxisomal tubulation and SDP1 targeting.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Plântula/metabolismo , Peroxissomos/metabolismo , Proteínas de Arabidopsis/metabolismo , Gotículas Lipídicas/metabolismo , Lipase/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Lipídeos , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMO
In selective macroautophagy/autophagy, cargo receptors are recruited to the forming autophagosome by interacting with Atg8 (autophagy-related 8)-family proteins and facilitate the selective sequestration of specific cargoes for autophagic degradation. In addition, Atg8 interacts with a number of adaptors essential for autophagosome biogenesis, including ATG and non-ATG proteins. The majority of these adaptors and receptors are characterized by an Atg8-family interacting motif (AIM) for binding to Atg8. However, the molecular basis for the interaction mode between ATG8 and regulators or cargo receptors in plants remains largely unclear. In this study, we unveiled an atypical interaction mode for Arabidopsis ATG8f with a plant unique adaptor protein, SH3P2 (SH3 domain-containing protein 2), but not with the other two SH3 proteins. By structure analysis of the unbound form of ATG8f, we identified the unique conformational changes in ATG8f upon binding to the AIM sequence of a plant known autophagic receptor, NBR1. To compare the binding affinity of SH3P2-ATG8f with that of ATG8f-NBR1, we performed a gel filtration assay to show that ubiquitin-associated domain of NBR1 outcompetes the SH3 domain of SH3P2 for ATG8f interaction. Biochemical and cellular analysis revealed that distinct interfaces were employed by ATG8f to interact with NBR1 and SH3P2. Further subcellular analysis showed that the AIM-like motif of SH3P2 is essential for its recruitment to the phagophore membrane but is dispensable for its trafficking in endocytosis. Taken together, our study provides an insightful structural basis for the ATG8 binding specificity toward a plant-specific autophagic adaptor and a conserved autophagic receptor.Abbreviations: ATG, autophagy-related; AIM, Atg8-family interacting motif; BAR, Bin-Amphiphysin-Rvs; BFA, brefeldin A; BTH, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester; CCV, clathrin-coated-vesicle; CLC2, clathrin light chain 2; Conc A, concanamycin A; ER, endoplasmic reticulum; LDS, LIR docking site; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; LIR, LC3-interacting region; PE, phosphatidylethanolamine; SH3P2, SH3 domain containing protein 2; SH3, Src-Homology-3; UBA, ubiquitin-associated; UIM, ubiquitin-interacting motif.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Autofagossomos/metabolismo , Autofagia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas de Transporte/metabolismoRESUMO
Mutations are the source of both genetic diversity and mutational load. However, the effects of increasing environmental temperature on plant mutation rates and relative impact on specific mutational classes (e.g., insertion/deletion [indel] vs. single nucleotide variant [SNV]) are unknown. This topic is important because of the poorly defined effects of anthropogenic global temperature rise on biological systems. Here, we show the impact of temperature increase on Arabidopsis thaliana mutation, studying whole genome profiles of mutation accumulation (MA) lineages grown for 11 successive generations at 29°C. Whereas growth of A. thaliana at standard temperature (ST; 23°C) is associated with a mutation rate of 7 × 10-9 base substitutions per site per generation, growth at stressful high temperature (HT; 29°C) is highly mutagenic, increasing the mutation rate to 12 × 10-9 SNV frequency is approximately two- to threefold higher at HT than at ST, and HT-growth causes an â¼19- to 23-fold increase in indel frequency, resulting in a disproportionate increase in indels (vs. SNVs). Most HT-induced indels are 1-2 bp in size and particularly affect homopolymeric or dinucleotide A or T stretch regions of the genome. HT-induced indels occur disproportionately in nucleosome-free regions, suggesting that much HT-induced mutational damage occurs during cell-cycle phases when genomic DNA is packaged into nucleosomes. We conclude that stressful experimental temperature increases accelerate plant mutation rates and particularly accelerate the rate of indel mutation. Increasing environmental temperatures are thus likely to have significant mutagenic consequences for plants growing in the wild and may, in particular, add detrimentally to mutational load.
Assuntos
Arabidopsis , Arabidopsis/genética , Biodiversidade , Mutação , Taxa de Mutação , TemperaturaRESUMO
Endocytosis and endosomal trafficking to vacuoles play important roles in regulating the homeostasis of plasma membrane (PM) proteins in plant cells. FREE1 (FYVE domain protein required for endosomal sorting 1) is a plant-unique component of the ESCRT (endosomal sorting complex required for transport) machinery. In free1 mutant plants, PIN-FORMED 2 (PIN2)-GFP was found to mislocalize from the PM to the tonoplast. In this chapter, we describe a detailed protocol for studying vacuolar sorting and degradation of PIN2-GFP by using T-DNA insertional mutants, dexamethasone (DEX) inducible RNAi lines, and other tools, including Fei-Mao (FM) dye staining and dark treatment. By using these methods, we illustrate the endosomal trafficking and vacuolar degradation of PIN2-GFP in plants.
Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Endossomos/metabolismo , Mutação , Proteínas de Transporte Vesicular/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/metabolismo , DNA Bacteriano/farmacologia , Dexametasona/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Transporte Proteico , ProteóliseRESUMO
Peroxisome, a single-membrane organelle conserved in eukaryotic, is responsible for a series of oxidative reactions with its specific enzymatic components. A counterbalance between peroxisome biogenesis and degradation is crucial for the homeostasis of peroxisomes. One such degradation mechanism, termed pexophagy, is a type of selective autophagic process to deliver the excess/damaged peroxisomes into the vacuole. In plants, pexophagy is involved in the remodeling of seedlings and quality control of peroxisomes. Here, we describe the recent advance in plant pexophagy, with a focus to discuss the key regulators in plants in comparison with those in yeast and mammals, as well as future directions for pexophagy studies in plants.
Assuntos
Autofagia , Plantas/metabolismo , Peroxissomos/metabolismo , Vacúolos/metabolismoRESUMO
The autophagosome is a double-membrane compartment formed during autophagy that sequesters and delivers cargoes for their degradation or recycling into the vacuole. Analyses of the AuTophaGy-related (ATG) proteins have unveiled dynamic mechanisms for autophagosome biogenesis. Recent advances in plant autophagy research highlight a complex interplay between autophagosome biogenesis and the endoplasmic reticulum (ER): on the one hand ER serves as a membrane source for autophagosome initiation and a signaling platform for autophagy regulation; on the other hand ER turnover is connected to selective autophagy. We provide here an integrated view of ER-based autophagosome biogenesis in plants in comparison with the newest findings in yeast and mammals, with an emphasis on the hierarchy of the core ATG proteins, ATG9 trafficking, and ER-resident regulators in autophagy.
Assuntos
Autofagossomos/metabolismo , Autofagia , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Retículo Endoplasmático/metabolismo , Modelos Biológicos , Transporte Proteico , Vacúolos/metabolismo , Leveduras/fisiologiaRESUMO
As a fundamental metabolic pathway to degrade and recycle cellular cargos, autophagy is highly induced upon stress, starvation and senescence conditions in plants. A double-membrane structure named autophagosome will form during this process for cargo sequestration and delivery into the vacuole. A number of regulators have been characterized in plants, including the autophagy-related (ATG) proteins and other plant-specific proteins. Among them, ATG8 will undergo a lipidation process to become a membrane-bound ATG8-phosphatidylethanolamine form and mark the growing autophagosomal membrane as well as the completed autophagosome. Therefore, ATG8 has been regarded as a marker for autophagosomes; and biochemical detection of the membrane-associated form of ATG8 is used as one of the principal methods for measurement of autophagic activity. Here, we describe an ATG8 lipidation assay for detection of the ATG8-PE form using Arabidopsis thaliana seedlings.