Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Adv Mater ; : e2407066, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108048

RESUMO

The assembly and patterning engineering in two-dimensional (2D) materials hold importance for chip-level designs incorporating multifunctional detectors. At present, the patterning and stacking methods of 2D materials inevitably introduce impurity instability and functional limitations. Here, the space-confined chemical vapor deposition method is employed to achieve state-of-the-art kirigami structures of self-assembled WS2, featuring various layer combinations and stacking configurations. With this technique as a foundation, the WS2 nano-kirigami is integrated with metasurface design, achieving a photodetector with bidirectional polarization-sensitive detection capability in the infrared spectrum. Nano-kirigami can eliminate some of the uncontrollable factors in the processing of 2D material devices, providing a freely designed platform for chip-level multifunctional detection across multiple modules.

2.
J Cardiovasc Magn Reson ; : 101076, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098574

RESUMO

BACKGROUND: Exertional heatstroke (EHS) is increasingly common in young trained soldiers. However, the prognosis marker in EHS patients remains unclear. To evaluate cardiac MRI feature tracking (CMR-FT) derived left ventricle (LV) strain as a biomarker for return to training (RTT) in trained soldiers with EHS in a prospective CMR cohort. METHODS: Trained soldiers (participants) with EHS underwent cardiac MR cine sequences between June 2020 and August 2023. Two-dimensional (2D) LV strain parameters were derived. At 3 months after index CMR, the participants with persistent cardiac symptoms including chest pain, dyspnea, palpitations, syncope, and recurrent heat-related illness were defined as non-RTT. Multivariable logistic regression analysis is used to develop a predictive RTT model. The performance of different models was compared using the area under curve (AUC). RESULTS: A total of 80 participants (median age, 21 years; interquartile range (IQR), 20-23 years) and 27 health controls (median age, 21 years; IQR, 20-22 years) were prospectively included. Of the 77 participants, 32 (41.6%) had persistent cardiac symptoms and were not able to RTT at 3 months follow-up after experiencing EHS. The 2D global longitudinal strain (GLS) was significantly impaired in EHS participants compared to the healthy control group (-15.81 ± 1.67% vs -16.93 ± 1.22%, P =.001), which also showed significantly statistical differences between participants with RTT and non-RTT (-14.99 ± 3.54% vs -16.53 ± 1.43%, P <.001). 2D-GLS (≤ -15.00%) (odds ratio, 1.53; 95% confidence interval (CI): 1.08, 2.17; P =.016) was an independent predictor for RTT even after adjusting known risk factors. 2D-GLS provided incremental prognostic value over the clinical model and conventional CMR parameters model (AUCs: 0.72 vs 0.88, P =.013; 0.79 vs 0.88, P =.023; respectively). CONCLUSIONS: Two-dimensional global longitudinal strain (≤ -15.00%) is an incremental prognostic CMR biomarker to predict return to training in exertional heatstroke soldiers.

3.
Brain Behav ; 14(7): e3621, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38970239

RESUMO

INTRODUCTION: Hepatic encephalopathy (HE) is a severe neuropsychiatric complication of liver diseases characterized by neuroinflammation. The efficacies of nonabsorbable rifaximin (RIF) and lactulose (LAC) have been well documented in the treatment of HE. [18F]PBR146 is a translocator protein (TSPO) radiotracer used for in vivo neuroinflammation imaging. This study investigated anti-neuroinflammation effect of RIF or/and LAC in chronic HE rats by [18F]PBR146 micro-PET/CT. METHODS: Bile duct ligation (BDL) operation induced chronic HE models, and this study included Sham+normal saline (NS), BDL+NS, BDL+RIF, BDL+LAC, and BDL+RIF+LAC groups. Behavioral assessment was performed to analyze the motor function, and fecal samples were collected after successfully established the chronic HE model (more than 28 days post-surgery). In addition, fecal samples collection and micro-PET/CT scans were performed sequentially. And we also collected the blood plasma, liver, intestinal, and brain samples after sacrificing the rats for further biochemical and pathological analyses. RESULTS: The RIF- and/or LAC-treated BDL rats showed similar behavioral results with Sham+NS group, while the treatment could not reverse the biliary obstruction resulting in sustained liver injury. The RIF or/and LAC treatments can inhibit IFN-γ and IL-10 productions. The global brain uptake values of [18F]PBR146 in BDL+NS group was significantly higher than other groups (p < .0001). The brain regions analysis showed that the basal ganglia, hippocampus, and cingulate cortex had radiotracer uptake differences among groups (all p < .05), which were consistent with the brain immunohistochemistry results. Sham+NS group was mainly enriched in Christensenella, Coprobacillus, and Pseudoflavonifractor. BDL+NS group was mainly enriched in Barnesiella, Alloprevotella, Enterococcus, and Enterorhabdus. BDL+RIF+LAC group was enriched in Parabacteroides, Bacteroides, Allobaculum, Bifidobacterium, and Parasutterella. CONCLUSIONS: RIF or/and LAC had anti-neuroinflammation in BDL-induced chronic HE rats with gut microbiota alterations. The [18F]PBR146 could be used for monitoring RIF or/and LAC treatment efficacy of chronic HE rats.


Assuntos
Encefalopatia Hepática , Lactulose , Ratos Sprague-Dawley , Rifaximina , Animais , Encefalopatia Hepática/tratamento farmacológico , Encefalopatia Hepática/diagnóstico por imagem , Encefalopatia Hepática/metabolismo , Rifaximina/farmacologia , Ratos , Masculino , Lactulose/farmacologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Modelos Animais de Doenças , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/diagnóstico por imagem , Fármacos Gastrointestinais/farmacologia , Fármacos Gastrointestinais/administração & dosagem , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Radioisótopos de Flúor , Proteínas de Transporte , Receptores de GABA-A
4.
PeerJ Comput Sci ; 10: e2108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983233

RESUMO

With the development of technology, more and more devices are connected to the Internet. According to statistics, Internet of Things (IoT) devices have reached tens of billions of units, which forms a massive Internet of Things system. Social Internet of Things (SIoT) is an essential extension of the IoT system. Because of the heterogeneity present in the SIoT system and the limited resources available, it is facing increasing security issues, which hinders the interaction of SIoT information. Consortium chain combined with the trust problem in SIoT systems has gradually become an important goal to improve the security of SIoT data interaction. Detection of malicious nodes is one of the key points to solve the trust problem. In this article, we focus on the consortium chain network. According to the information characteristics of nodes on the consortium chain, it can be analyzed that the SIoT malicious node detection combined with the consortium chain network should have the privacy protection, subjectivity, uncertainty, lightweight, dynamic timeliness and so on. In response to the features above and the concerns of existing malicious node detection methods, we propose an algorithm based on inter-block delay. We employ unsupervised clustering algorithms, including K-means and DBSCAN, to analyze and compare the data set intercepted from the consortium chain. The results indicate that DBSCAN exhibits the best clustering performance. Finally, we transmit the acquired data onto the chain. We conclude that the proposed algorithm is highly effective in detecting malicious nodes on the combination of SIoT and consortium chain networks.

5.
CNS Neurosci Ther ; 30(6): e14692, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872258

RESUMO

AIM: Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease characterized by progressive death of upper and lower motor neurons, leading to generalized muscle atrophy, paralysis, and even death. Mitochondrial damage and neuroinflammation play key roles in the pathogenesis of ALS. In the present study, the efficacy of A-1, a derivative of arctigenin with AMP-activated protein kinase (AMPK) and silent information regulator 1 (SIRT1) activation for ALS, was investigated. METHODS: A-1 at 33.3 mg/kg was administrated in SOD1G93A transgenic mice orally from the 13th week for a 6-week treatment period. Motor ability was assessed before terminal anesthesia. Muscle atrophy and fibrosis, motor neurons, astrocytes, and microglia in the spinal cord were evaluated by H&E, Masson, Sirius Red, Nissl, and immunohistochemistry staining. Protein expression was detected with proteomics analysis, Western blotting, and ELISA. Mitochondrial adenosine triphosphate (ATP) and malondialdehyde (MDA) levels were measured using an assay kit. RESULTS: A-1 administration in SOD1G93A mice enhanced mobility, decreased skeletal muscle atrophy and fibrosis, mitigated loss of spinal motor neurons, and reduced glial activation. Additionally, A-1 treatment improved mitochondrial function, evidenced by elevated ATP levels and increased expression of key mitochondrial-related proteins. The A-1 treatment group showed decreased levels of IL-1ß, pIκBα/IκBα, and pNF-κB/NF-κB. CONCLUSIONS: A-1 treatment reduced motor neuron loss, improved gastrocnemius atrophy, and delayed ALS progression through the AMPK/SIRT1/PGC-1α pathway, which promotes mitochondrial biogenesis. Furthermore, the AMPK/SIRT1/IL-1ß/NF-κB pathway exerted neuroprotective effects by reducing neuroinflammation. These findings suggest A-1 as a promising therapeutic approach for ALS.


Assuntos
Proteínas Quinases Ativadas por AMP , Esclerose Lateral Amiotrófica , Furanos , Interleucina-1beta , Camundongos Transgênicos , NF-kappa B , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Furanos/farmacologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/metabolismo , Interleucina-1beta/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Lignanas/farmacologia , Lignanas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Masculino , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Neurônios Motores/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/metabolismo
6.
Transl Neurosci ; 15(1): 20220340, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38708097

RESUMO

Objectives: The FT4-to-FT3 ratio (FFR) variations in patients with subacute combined spinal cord degeneration (SCSD) as a potentially useful prognostic indicator are still unknown. This study aimed to investigate the changes of FFR as a potentially valuable prognostic predictor in patients with SCSD. Methods: This study included 144 consecutive SCSD patients who received standard diagnostic and therapeutic procedures between January 2015 and December 2021 and were admitted to the Department of Neurology at the First Affiliated Hospital of Bengbu Medical University. At the time of admission, we gathered data on all patients' demographics, daily routines, previous chronic conditions, medication histories, and other clinical details. For the purpose of measuring FFR, blood samples were specifically taken within 48 h of admission. The degree of neurological impairment of patients was assessed using the functional disability scale at the time of admission. At 6 months following discharge, the Modified Rankin Scale (mRS) was used to evaluate the clinical prognosis. To evaluate the relationship between the FFR and the risks of a poor outcome (mRS > 2), univariate and multivariate logistic regression analysis was utilized. The significance of the FT4/FT3 ratio in predicting the clinical outcomes in SCSD patients 6 months after discharge was assessed using the area under curve-receiver operating characteristic (AUC-ROC). Results: About 90 patients (62.5%) of the 144 patients had poor outcomes, while 54 (37.5%) had favorable outcomes. Higher FFR at admission was independently linked to higher odds of a poor outcome, according to a logistic analysis. With an optimized cutoff value of >2.843, the FFR exhibited the maximum accuracy for predicting a poor outcome, according to the AUC‒ROC curve (AUC 0.731, P < 0.001; sensitivity, 77.8%; specificity, 83.3%). FFR was identified as an independent predictor of poor outcomes by multivariate logistic regression (OR, 2.244; 95% CI, 1.74-2.90; P < 0.001). Conclusions: We discovered that in patients who had a bad result 6 months after discharge, the FFR had dramatically increased at the time of admission, providing a unique prognostic marker in patients with SCSD.

7.
J Org Chem ; 89(11): 7821-7827, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38805614

RESUMO

Total synthesis of simonsol C has been achieved, focusing on the postdearomatization transformations. Our methodology integrates an efficient combination of dearomatization and Zn/AcOH reduction to introduce an allyl group, followed by oxo-Michael addition, to construct the 6/5/6 benzofuran skeleton. It offers a novel method for synthesizing allyl-containing quaternary carbon atoms in a straightforward manner.

8.
Phys Chem Chem Phys ; 26(15): 11414-11428, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591159

RESUMO

The ongoing evolution of the Omicron lineage of SARS-CoV-2 has led to the emergence of subvariants that pose challenges to antibody neutralization. Understanding the binding dynamics between the receptor-binding domains (RBD) of these subvariants spike and monoclonal antibodies (mAbs) is pivotal for elucidating the mechanisms of immune escape and for advancing the development of therapeutic antibodies. This study focused on the RBD regions of Omicron subvariants BA.2, BA.5, BF.7, and XBB.1.5, employing molecular dynamics simulations to unravel their binding mechanisms with a panel of six mAbs, and subsequently analyzing the origins of immune escape from energetic and structural perspectives. Our results indicated that the antibody LY-COV1404 maintained binding affinities across all studied systems, suggesting the resilience of certain antibodies against variant-induced immune escape, as seen with the mAb 1D1-Fab. The newly identified mAb 002-S21F2 showed a similar efficacy profile to LY-COV1404, though with a slightly reduced binding to BF.7. In parallel, mAb REGN-10933 emerged as a potential therapeutic candidate against BF.7 and XBB.1.5, reflecting the importance of identifying variant-specific antibody interactions, akin to the binding optimization observed in BA.4/5 and XBB.1.5. And key residues that facilitate RBD-mAb binding were identified (T345, L441, K444, V445, and T500), alongside residues that hinder protein-protein interactions (D420, L455, K440, and S446). Particularly noteworthy was the inhibited binding of V445 and R509 with mAbs in the presence of mAb 002-S21F2, suggesting a mechanism for immune escape, especially through the reduction of V445 hydrophobicity. These findings enhance our comprehension of the binding interactions between mAbs and RBDs, contributing to the understanding of immune escape mechanisms. They also lay the groundwork for the design and optimization of antiviral drugs and have significant implications for the development of treatments against current and future coronaviruses.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Antivirais , Simulação de Dinâmica Molecular , SARS-CoV-2
9.
Chem Asian J ; 19(10): e202400237, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563626

RESUMO

Herein, we report a rare example of cationic three-dimensional (3D) metal-organic framework (MOF) of [Cu5Cl3(TMPP)]Cl5 ⋅ xSol (denoted as Cu-TMPP; H2TMPP=meso-tetrakis (6-methylpyridin-3-yl) porphyrin; xSol=encapsulated solvates) supported by [Cu8Cl6]10+ cluster secondary building units (SBUs) wherein the eight faces of the Cl--based octahedron are capped by eight Cu2+. Surface-area analysis indicated that Cu-TMPP features a mesoporous structure and its solvate-like Cl- counterions can be exchanged by BF4 -, PF6 -, and NO3 -. The polyvinylpyrrolidone (PVP) coated Cu-TMPP (denoted as Cu-TMPP-PVP) demonstrated good ROS generating ability, producing ⋅OH in the absence of light (peroxidase-like activity) and 1O2 on light irradiation (650 nm; 25 mW cm-2). This work highlights the potential of Cu-TMPP as a functional carrier of anionic guests such as drugs, for the combination therapy of cancer and other diseases.

10.
Int J Biol Macromol ; 265(Pt 1): 130921, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492688

RESUMO

The design of small molecule inhibitors that target the programmed death ligand-1 (PD-L1) is a forefront issue in immune checkpoint blocking therapy. Small-molecule inhibitors have been shown to exert therapeutic effects by inducing dimerization of the PD-L1 protein, however, the specific mechanisms underlying this dimerization process remain largely unexplored. Furthermore, there is a notable lack of comparative studies examining the binding modes of structurally diverse inhibitors. In view of the research gaps, this work employed molecular dynamics simulations to meticulously examine the interactions between two distinct types of inhibitors and PD-L1 in both monomeric and dimeric forms, and predicted the dimerization mechanism. The results revealed that inhibitors initially bind to a PD-L1 monomer, subsequently attracting another monomer to form a dimer. Notably, symmetric inhibitors observed superior binding efficiency compared to other inhibitors. Key residues, including Ile54, Tyr56, Met115 and Tyr123 played a leading role in binding. Structurally, symmetric inhibitors were capable of thoroughly engaging the binding pocket, promoting a more symmetrical formation of PD-L1 dimers. Furthermore, symmetric inhibitors formed more extensive hydrophobic interactions with protein residues. The insights garnered from this research are expected to significantly contribute to the rational design and optimization of small molecule inhibitors targeting PD-L1.


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Dimerização , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Bibliotecas de Moléculas Pequenas/química , Simulação de Dinâmica Molecular
11.
Phys Chem Chem Phys ; 26(6): 4989-5001, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38258432

RESUMO

HIV-1 protease (PR) plays a crucial role in the treatment of HIV as a key target. The global issue of emerging drug resistance is escalating, and PR mutations pose a substantial challenge to the effectiveness of inhibitors. HIV-1 PR is an ideal model for studying drug resistance to inhibitors. The inhibitor, darunavir (DRV), exhibits a high genetic barrier to viral resistance, but with mutations of residues in the PR, there is also some resistance to DRV. Inhibitors can impede PR in two ways: one involves binding to the active site of the dimerization protease, and the other involves binding to the PR monomer, thereby preventing dimerization. In this study, we aimed to investigate the inhibitory effect of DRV with a modified inhibitor on PR, comparing the differences between wild-type and mutated PR, using molecular dynamics simulations. The inhibitory effect of the inhibitors on PR monomers was subsequently investigated. And molecular mechanics Poisson-Boltzmann surface area evaluated the binding free energy. The energy contribution of individual residues in the complex was accurately calculated by the alanine scanning binding interaction entropy method. The results showed that these inhibitors had strong inhibitory effects against PR mutations, with GRL-142 exhibiting potent inhibition of both the PR monomer and dimer. Improved inhibitors could strengthen hydrogen bonds and interactions with PR, thereby boosting inhibition efficacy. The binding of the inhibitor and mutation of the PR affected the distance between D25 and I50, preventing their dimerization and the development of drug resistance. This study could accelerate research targeting HIV-1 PR inhibitors and help to further facilitate drug design targeting both mechanisms.


Assuntos
Inibidores da Protease de HIV , Darunavir , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Dimerização , Protease de HIV/química , Simulação de Dinâmica Molecular , Mutação
12.
J Thorac Imaging ; 39(2): 86-92, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38270475

RESUMO

PURPOSE: To investigate intraindividual cardiac structural and functional changes before and after COVID-19 infection in a previously healthy population with a 3T cardiac magnetic resonance (CMR). MATERIALS AND METHODS: A total of 39 unhospitalized patients with COVID-19 were recruited. They participated in our previous study as non-COVID-19 healthy volunteers undergoing baseline CMR examination and were recruited to perform a repeated CMR examination after confirmed COVID-19 infection in December 2022. The CMR parameters were measured and compared between before and after COVID-19 infection with paired t tests. The laboratory measures including myocardial enzymes and inflammatory indicators were also collected when performing repeated CMR. RESULTS: The median duration was 393 days from the first to second CMR and 26 days from clinical symptoms onset to the second CMR. Four patients (10.3%, 4/39) had the same late gadolinium enhancement pattern at baseline and repeated CMR and 5 female patients (12.8%, 5/39) had myocardial T2 ratio >2 (2.07 to 2.27) but with normal T2 value in post-COVID-19 CMR. All other CMR parameters were in normal ranges before and after COVID-19 infection. Between before and after the COVID-19 infection, there were no significant differences in cardiac structure, function, and tissue characterization, no matter with or without symptoms (fatigue, chest discomfort, palpitations, shortness of breath, and insomnia/sleep disorders) (all P >0.05). The laboratory measures at repeated CMR were in normal ranges in all participants. CONCLUSIONS: These intraindividual CMR studies showed unhospitalized patients with COVID-19 with normal myocardial enzymes had no measurable CMR abnormalities, which can help alleviate wide social concerns about COVID-19-related myocarditis.


Assuntos
COVID-19 , Miocardite , Humanos , Feminino , Meios de Contraste , COVID-19/diagnóstico por imagem , COVID-19/patologia , Imagem Cinética por Ressonância Magnética , Gadolínio , Imageamento por Ressonância Magnética , Miocárdio/patologia , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes
13.
J Cell Mol Med ; 28(3): e18097, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38164738

RESUMO

Current studies have indicated that insufficient trophoblast epithelial-mesenchymal transition (EMT), migration and invasion are crucial for spontaneous abortion (SA) occurrence and development. Exosomal miRNAs play significant roles in embryonic development and cellular communication. Hereon, we explored the roles of serum exosomes derived from SA patients on trophoblast EMT, migration and invasion. Exosomes were isolated from normal control (NC) patients with abortion for unplanned pregnancy and SA patients, then characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blotting. Exosomal miRNA profiles were identified by miRNA sequencing. The effects of serum exosomes on trophoblast migration and invasion were detected by scratch wound healing and transwell assays, and other potential mechanisms were revealed by quantitative real-time PCR (RT-PCR), western blotting and dual-luciferase reporter assay. Finally, animal experiments were used to explore the effects of exosomal miR-410-3p on embryo absorption in mice. The serum exosomes from SA patients inhibited trophoblast EMT and reduced their migration and invasion ability in vitro. The miRNA sequencing showed that miR-410-3p was upregulated in SA serum exosomes. The functional experiments showed that SA serum exosomes restrained trophoblast EMT, migration and invasion by releasing miR-410-3p. Mechanistically, SA serum exosomal miR-410-3p inhibited trophoblast cell EMT, migration and invasion by targeting TNF receptor-associated factor 6 (TRAF6) at the post-transcriptional level. Besides, SA serum exosomal miR-410-3p inhibited the p38 MAPK signalling pathway by targeting TRAF6 in trophoblasts. Moreover, milk exosomes loaded with miR-410-3p mimic reached the maternal-fetal interface and aggravated embryo absorption in female mice. Clinically, miR-410-3p and TRAF6 expression were abnormal and negatively correlated in the placental villi of SA patients. Our findings indicated that exosome-derived miR-410-3p plays an important role between SA serum and trophoblasts in intercellular communication, suggesting a novel mechanism by which serum exosomal miRNA regulates trophoblasts in SA patients.


Assuntos
Aborto Espontâneo , Exossomos , MicroRNAs , Humanos , Feminino , Gravidez , Camundongos , Animais , Exossomos/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Placenta/metabolismo , MicroRNAs/genética , Trofoblastos/metabolismo , Transição Epitelial-Mesenquimal/genética , Proliferação de Células , Movimento Celular/genética
14.
Heliyon ; 9(12): e22155, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125500

RESUMO

Background: Polycystic ovary syndrome (PCOS) is a multifaceted endocrine and metabolic syndrome with complex origins and pathogenesis that has not yet been fully elucidated. Recently, the interconnection between gut microbiota and metabolic diseases has gained prominence in research, generating new insights into the correlation between PCOS and gut microbiota composition. However, the causal link between PCOS and gut microbiota remains relatively unexplored, indicating a crucial gap in current research. Methods: We conducted a two-sample Mendelian randomization analysis using summary statistics obtained from the MiBioGen Consortium's extensive genome-wide association studies (GWAS) meta-analysis, focusing on the gut microbiota. Summary statistics for PCOS were acquired from the FinnGen Consortium R7 release data. Various statistical approaches, including inverse variance weighted, MR-Egger, maximum likelihood, weighted model, and weighted median, have been employed to investigate the causal association between the gut microbiota and PCOS. Additionally, we performed a reverse causal analysis. Cochran's Q statistic was used to assess the heterogeneity of the instrumental variables. Regarding the relationships between PCOS and specific genera within the gut microbiota, a significance level of P < 0.05 was observed, but only when q ≥ 0.1. Results: Our analysis revealed that specific microbial genera, namely Bilophila (P = 4.62 × 10-3), Blautia (P = 0.02), and Holdemania (P = 0.04), displayed a protective effect against PCOS. Conversely, the presence of the Lachnospiraceae family of bacteria was associated with a detrimental effect on PCOS (P = 0.04). Furthermore, reverse Mendelian randomization analysis confirmed the significant influence of Lachnospiraceae on PCOS. No significant variations in instrumental variables or evidence of horizontal pleiotropy were observed. Conclusions: The results revealed a definitive causal link between PCOS and the presence of Bilophila, Blautia, Holdemania, and Lachnospiraceae in the gut microbiota. This discovery could provide pivotal insights, leading to novel preventive and therapeutic approaches for PCOS.

15.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 156-161, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38158673

RESUMO

Neurodegenerative illnesses have long been handled clinically by traditional Chinese medicine. This study is the first time to explore the pharmacological basis of application in amyotrophic lateral sclerosis (ALS) through network pharmacology and molecular docking techniques. In the present investigation, the TCMSP database and HIT2 database were examined for 9 TCM constituents of Sheng Ji Yu Sui Decoction (SJYSD), and the desired sites for the components were searched in the Drugbank database. and the Sjysd-target network was constructed. Associated targets for Amyotrophic lateral sclerosis (ALS) were then retrieved and collected in the OMIM, TTD, Genecards and DisGeNET databases. Protein-protein interaction and enrichment analysis were performed for the common targets of drugs and diseases, and molecular anchoring for the chosen core targets and related molecules was carried out. The results showed that SJYSD had 100 active compounds corresponding to 598 targets. ALS has a total of 5,325 genes. SJYSD and ALS share 163 genes, and these targets involve PI3K-AKT signaling, p53 signaling and IL-17 signaling, etc. The core components of luteolin and quercetin were discovered and may be used to treat ALS by regulating PI3K-AKT signaling pathway by HSP90AB1 protein.


Assuntos
Esclerose Lateral Amiotrófica , Medicamentos de Ervas Chinesas , Humanos , Farmacologia em Rede , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Medicina Tradicional Chinesa , Tecnologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
17.
Clinics ; 68(6): 732-737, jun. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-676939

RESUMO

OBJECTIVE: An elevated red cell distribution width has been recognized as a predictor of various cardiovascular diseases. Slow coronary flow syndrome is an important angiographic clinical entity with an unknown etiology. This study aimed to examine the relationship between red cell distribution width and the presence of slow coronary flow syndrome. METHODS: In total, 185 patients with slow coronary flow syndrome and 183 age- and gender-matched subjects with normal coronary flow (controls) were prospectively enrolled in this study. Red cell distribution width and C-reactive protein were measured upon admission, and the results were compared between the patients with slow coronary flow syndrome and normal controls. RESULTS: Red cell distribution width levels were significantly higher in the patients with slow coronary flow syndrome than the normal controls. Moreover, the data showed that the plasma C-reactive protein levels were also higher in the patients with slow coronary flow syndrome than in the normal controls. In addition, a multivariate analysis indicated that C-reactive protein and red cell distribution width were the independent variables most strongly associated with slow coronary flow syndrome. Finally, the red cell distribution width was positively correlated with C-reactive protein and mean thrombosis in the myocardial infarction frame counts of the patients with slow coronary flow syndrome. CONCLUSION: The data demonstrated that red cell distribution width levels are significantly higher and strongly positively correlated with both C-reactive protein and thrombosis in the myocardial infarction frame counts of patients with slow coronary flow syndrome. These findings suggest that red cell distribution width may be a useful marker for patients with slow coronary flow syndrome. .


Assuntos
Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença da Artéria Coronariana/sangue , Circulação Coronária/fisiologia , Índices de Eritrócitos , Biomarcadores/sangue , Velocidade do Fluxo Sanguíneo/fisiologia , Proteína C-Reativa/análise , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Angiografia Coronária , Estudos Prospectivos , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA