Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Clin Invest ; 134(6)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38488001

RESUMO

Breast cancer stem cells (BCSCs) mitigate oxidative stress to maintain their viability and plasticity. However, the regulatory mechanism of oxidative stress in BCSCs remains unclear. We recently found that the histone reader ZMYND8 was upregulated in BCSCs. Here, we showed that ZMYND8 reduced ROS and iron to inhibit ferroptosis in aldehyde dehydrogenase-high (ALDHhi) BCSCs, leading to BCSC expansion and tumor initiation in mice. The underlying mechanism involved a two-fold posttranslational regulation of nuclear factor erythroid 2-related factor 2 (NRF2). ZMYND8 increased stability of NRF2 protein through KEAP1 silencing. On the other hand, ZMYND8 interacted with and recruited NRF2 to the promoters of antioxidant genes to enhance gene transcription in mammospheres. NRF2 phenocopied ZMYND8 to enhance BCSC stemness and tumor initiation by inhibiting ROS and ferroptosis. Loss of NRF2 counteracted ZMYND8's effects on antioxidant genes and ROS in mammospheres. Interestingly, ZMYND8 expression was directly controlled by NRF2 in mammospheres. Collectively, these findings uncover a positive feedback loop that amplifies the antioxidant defense mechanism sustaining BCSC survival and stemness.


Assuntos
Neoplasias da Mama , Ferroptose , Fator 2 Relacionado a NF-E2 , Células-Tronco Neoplásicas , Transativadores , Animais , Camundongos , Antioxidantes , Ferroptose/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transativadores/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia
2.
Mol Cell ; 84(4): 776-790.e5, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211588

RESUMO

TANK-binding kinase 1 (TBK1) is a potential therapeutic target in multiple cancers, including clear cell renal cell carcinoma (ccRCC). However, targeting TBK1 in clinical practice is challenging. One approach to overcome this challenge would be to identify an upstream TBK1 regulator that could be targeted therapeutically in cancer specifically. In this study, we perform a kinome-wide small interfering RNA (siRNA) screen and identify doublecortin-like kinase 2 (DCLK2) as a TBK1 regulator in ccRCC. DCLK2 binds to and directly phosphorylates TBK1 on Ser172. Depletion of DCLK2 inhibits anchorage-independent colony growth and kidney tumorigenesis in orthotopic xenograft models. Conversely, overexpression of DCLK2203, a short isoform that predominates in ccRCC, promotes ccRCC cell growth and tumorigenesis in vivo. Mechanistically, DCLK2203 elicits its oncogenic signaling via TBK1 phosphorylation and activation. Taken together, these results suggest that DCLK2 is a TBK1 activator and potential therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinogênese/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Quinases Semelhantes a Duplacortina , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
3.
J Clin Invest ; 133(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655663

RESUMO

SAP30 is a core subunit of the transcriptional corepressor SIN3 complex, but little is known about its role in gene regulation and human cancer. Here, we show that SAP30 was a nonmutational oncoprotein upregulated in more than 50% of human breast tumors and correlated with unfavorable outcomes in patients with breast cancer. In various breast cancer mouse models, we found that SAP30 promoted tumor growth and metastasis through its interaction with SIN3A/3B. Surprisingly, the canonical gene silencing role was not essential for SAP30's tumor-promoting actions. SAP30 enhanced chromatin accessibility and RNA polymerase II occupancy at promoters in breast cancer cells, acting as a coactivator for genes involved in cell motility, angiogenesis, and lymphangiogenesis, thereby driving tumor progression. Notably, SAP30 formed a homodimer with 1 subunit binding to SIN3A and another subunit recruiting MLL1 through specific Phe186/200 residues within its transactivation domain. MLL1 was required for SAP30-mediated transcriptional coactivation and breast tumor progression. Collectively, our findings reveal that SAP30 represents a transcriptional dependency in breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Complexo Correpressor Histona Desacetilase e Sin3 , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Núcleo Celular , Cromatina , Histona Desacetilases/genética , Complexo Correpressor Histona Desacetilase e Sin3/genética
4.
Eur Radiol ; 33(10): 7139-7148, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37148354

RESUMO

OBJECTIVE: To estimate the diagnostic value of contrast-enhanced MR angiography (CE-MRA) in identifying residual brain arteriovenous malformations (AVMs) after treatment. METHODS: We retrieved appropriate references from the electronic databases of PubMed, Web of Science, Embase, and Cochrane Library, and then evaluated the methodology quality of included references using the QUADAS-2 tool. We calculated the pooled sensitivity and specificity by applying a bivariate mixed-effects model and detected the publication bias using Deeks' funnel plot. The values of I2 were used to test heterogeneity and meta-regression analyses were performed to search for the causes of heterogeneity. RESULTS: We included 7 eligible studies containing 223 participants. Compared with a gold standard, the overall sensitivity and specificity of CE-MRA in detecting residual brain AVMs were 0.77 (95% CI 0.65-0.86) and 0.97 (95% CI 0.82-1.00), respectively. Based on the summary ROC curve, the AUC was 0.89 (95% CI 0.86-0.92). Heterogeneity could be observed in our study, especially for the specificity (I2 = 74.23%). Furthermore, there was no evidence of publication bias. CONCLUSIONS: Our study provides evidence that CE-MRA has good diagnostic value and specificity for the follow-up of treated brain AVMs. Nevertheless, considering the small sample size, heterogeneity, and many factors that may affect the diagnostic accuracy, future large-sample, prospective studies are necessary to validate the results. KEY POINTS: • The pooled sensitivity and specificity of contrast-enhanced MR angiography (CE-MRA) in detecting residual arteriovenous malformations (AVMs) were 0.77 (95% CI 0.65-0.86) and 0.97 (95% CI 0.82-1.00). • The four-dimensional CE-MRA showed less sensitivity than the three-dimensional CE-MRA for treated AVMs. • CE-MRA is helpful to identify residual AVMs and reduce excessive DSA during follow-up.


Assuntos
Malformações Arteriovenosas , Angiografia por Ressonância Magnética , Humanos , Angiografia por Ressonância Magnética/métodos , Estudos Prospectivos , Seguimentos , Encéfalo , Sensibilidade e Especificidade , Angiografia Digital/métodos
5.
Clin Cancer Res ; 29(9): 1763-1782, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36692427

RESUMO

PURPOSE: Mutant isocitrate dehydrogenase 1 (mIDH1) alters the epigenetic regulation of chromatin, leading to a hypermethylation phenotype in adult glioma. This work focuses on identifying gene targets epigenetically dysregulated by mIDH1 to confer therapeutic resistance to ionizing radiation (IR). EXPERIMENTAL DESIGN: We evaluated changes in the transcriptome and epigenome in a radioresistant mIDH1 patient-derived glioma cell culture (GCC) following treatment with an mIDH1-specific inhibitor, AGI-5198. We identified Zinc Finger MYND-Type Containing 8 (ZMYND8) as a potential target of mIDH1 reprogramming. We suppressed ZMYND8 expression by shRNA knockdown and genetic knockout (KO) in mIDH1 glioma cells and then assessed cellular viability to IR. We assessed the sensitivity of mIDH1 GCCS to pharmacologic inhibition of ZMYND8-interacting partners: HDAC, BRD4, and PARP. RESULTS: Inhibition of mIDH1 leads to an upregulation of gene networks involved in replication stress. We found that the expression of ZMYND8, a regulator of DNA damage response, was decreased in three patient-derived mIDH1 GCCs after treatment with AGI-5198. Knockdown of ZMYND8 expression sensitized mIDH1 GCCs to radiotherapy marked by decreased cellular viability. Following IR, mIDH1 glioma cells with ZMYND8 KO exhibit significant phosphorylation of ATM and sustained γH2AX activation. ZMYND8 KO mIDH1 GCCs were further responsive to IR when treated with either BRD4 or HDAC inhibitors. PARP inhibition further enhanced the efficacy of radiotherapy in ZMYND8 KO mIDH1 glioma cells. CONCLUSIONS: These findings indicate the impact of ZMYND8 in the maintenance of genomic integrity and repair of IR-induced DNA damage in mIDH1 glioma. See related commentary by Sachdev et al., p. 1648.


Assuntos
Glioma , Isocitrato Desidrogenase , Humanos , Isocitrato Desidrogenase/metabolismo , Domínios MYND , Epigênese Genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Glioma/genética , Glioma/radioterapia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
6.
Nat Genet ; 54(11): 1721-1735, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36347944

RESUMO

Histone post-translational modifications (PTMs) are important for regulating various DNA-templated processes. Here, we report the existence of a histone PTM in mammalian cells, namely histone H3 with hydroxylation of proline at residue 16 (H3P16oh), which is catalyzed by the proline hydroxylase EGLN2. We show that H3P16oh enhances direct binding of KDM5A to its substrate, histone H3 with trimethylation at the fourth lysine residue (H3K4me3), resulting in enhanced chromatin recruitment of KDM5A and a corresponding decrease of H3K4me3 at target genes. Genome- and transcriptome-wide analyses show that the EGLN2-KDM5A axis regulates target gene expression in mammalian cells. Specifically, our data demonstrate repression of the WNT pathway negative regulator DKK1 through the EGLN2-H3P16oh-KDM5A pathway to promote WNT/ß-catenin signaling in triple-negative breast cancer (TNBC). This study characterizes a regulatory mark in the histone code and reveals a role for H3P16oh in regulating mammalian gene expression.


Assuntos
Histonas , Prolina , Animais , Histonas/metabolismo , Metilação , Prolina/genética , Prolina/metabolismo , Hidroxilação , Expressão Gênica , Mamíferos/genética
7.
Curr Res Food Sci ; 5: 1320-1329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072509

RESUMO

At present, lactic acid bacteria (LAB) fermentation is commonly considered as an effective strategy to remarkably drive the improvement of flavor and nutritional value, and extend shelf-life of fermented foods. In this study, the by-product of tea manufacture, including broken tea segments and tea stalk, was used to produce fermented tea beverages. In addition, the residual components of matrices and bacterial metabolites were measured, as well as the sensory quality of the beverage was evaluated. Subsequently, the determination of monosaccharides, volatile aroma profile, free amino acids, biogenic amines and organic acids, and several functional substances involving γ-aminobutyric acid (GABA), polyphenols, caffeine and L-theanine were carried out. The results revealed that glucose, fructose, mannose and xylose are principal carbon source of Lactobacillus plantarum RLL68 during the fermentation; moreover, the abundance of aromatic substances is varied dramatically and the characteristic flavors of the beverages, particularly fermentation for 48 h and 72 h, are imparted with sweet and fruity odor on the basis of initial nutty and floral odor; Meanwhile, the organoleptic qualities of fermented beverages is also enhanced. Furthermore, the levels of organic acids and GABA are elevated, while the bitter amino acids, as well as some bioactive substances including tea polyphenols and L-theanine are declined; Besides, the caffeine level almost remains constant, and quite low levels of various biogenic amines are also observed. The results of this study will provide the theoretical basis to steer and control the flavor and quality of the fermented tea beverages in the future.

8.
Cells ; 11(16)2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-36010673

RESUMO

Hypoxia-inducible factor (HIF) directly activates the transcription of metabolic enzymes in response to hypoxia to reprogram cellular metabolism required for tumor cell proliferation. Through analyzing glutamate-linked aminotransferases, we here identified glutamate pyruvate transaminase 2 (GPT2) as a direct HIF-2 target gene in human glioblastoma (GBM). Hypoxia upregulated GPT2 mRNA and protein levels in GBM cells, which required HIF-2 but not HIF-1. HIF-2 directly bound to the hypoxia response element of the human GPT2 gene, leading to its transcription in hypoxic GBM cells. GPT2 located at the nucleus and mitochondria and reduced α-ketoglutarate levels in GBM cells. Genetic or pharmacological inhibition of GPT2 decreased GBM cell growth and migration under normoxia and hypoxia. Knockout of GPT2 inhibited GBM tumor growth in mice. Collectively, these findings uncover a hypoxia-inducible aminotransferase GPT2 required for GBM progression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Glioblastoma , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glutamatos , Humanos , Hipóxia , Camundongos , Camundongos Knockout , Transaminases/genética
9.
Sci Adv ; 8(28): eabn5295, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857506

RESUMO

27-Hydroxycholesterol (27-HC) is the most abundant oxysterol that increases the risk of breast cancer progression. However, little is known about epigenetic regulation of 27-HC metabolism and its role in breast tumor initiation. Using genetic mouse mammary tumor and human breast cancer models, we showed here that the histone reader ZMYND8 was selectively expressed in breast cancer stem cells (BCSCs) and promoted epithelial-mesenchymal transition (EMT), BCSC maintenance and self-renewal, and oncogenic transformation through its epigenetic functions, leading to breast tumor initiation. Mechanistically, ZMYND8 was a master transcriptional regulator of 27-HC metabolism. It increased cholesterol biosynthesis and oxidation but blocked cholesterol efflux and 27-HC catabolism, leading to accumulation of 27-HC in BCSCs. Consequently, 27-HC promoted EMT, oncogenic transformation, and tumor initiation through activation of liver X receptor. These findings reveal that ZMYND8 is an epigenetic booster that drives breast tumor initiation through metabolic reprogramming.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/patologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Colesterol/metabolismo , Epigênese Genética , Feminino , Humanos , Hidroxicolesteróis , Camundongos , Células-Tronco Neoplásicas/metabolismo
10.
Nucleic Acids Res ; 50(11): 6313-6331, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35648484

RESUMO

Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA damage sensor and contributes to both DNA repair and cell death processes. However, how PARP-1 signaling is regulated to switch its function from DNA repair to cell death remains largely unknown. Here, we found that PARP-1 plays a central role in alkylating agent-induced PARthanatic cancer cell death. Lysine demethylase 6B (KDM6B) was identified as a key regulator of PARthanatos. Loss of KDM6B protein or its demethylase activity conferred cancer cell resistance to PARthanatic cell death in response to alkylating agents. Mechanistically, KDM6B knockout suppressed methylation at the promoter of O6-methylguanine-DNA methyltransferase (MGMT) to enhance MGMT expression and its direct DNA repair function, thereby inhibiting DNA damage-evoked PARP-1 hyperactivation and subsequent cell death. Moreover, KDM6B knockout triggered sustained Chk1 phosphorylation and activated a second XRCC1-dependent repair machinery to fix DNA damage evading from MGMT repair. Inhibition of MGMT or checkpoint response re-sensitized KDM6B deficient cells to PARthanatos induced by alkylating agents. These findings provide new molecular insights into epigenetic regulation of PARP-1 signaling mediating DNA repair or cell death and identify KDM6B as a biomarker for prediction of cancer cell vulnerability to alkylating agent treatment.


Assuntos
Dacarbazina , Parthanatos , Alquilantes , DNA , Reparo do DNA , Dacarbazina/farmacologia , Epigênese Genética , Guanina/análogos & derivados , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Temozolomida/farmacologia
11.
Cancer Res ; 82(13): 2388-2402, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35499760

RESUMO

Branched-chain amino acid transaminase 1 (BCAT1) is upregulated selectively in human isocitrate dehydrogenase (IDH) wildtype (WT) but not mutant glioblastoma multiforme (GBM) and promotes IDHWT GBM growth. Through a metabolic synthetic lethal screen, we report here that α-ketoglutarate (AKG) kills IDHWT GBM cells when BCAT1 protein is lost, which is reversed by reexpression of BCAT1 or supplementation with branched-chain α-ketoacids (BCKA), downstream metabolic products of BCAT1. In patient-derived IDHWT GBM tumors in vitro and in vivo, cotreatment of BCAT1 inhibitor gabapentin and AKG resulted in synthetic lethality. However, AKG failed to evoke a synthetic lethal effect with loss of BCAT2, BCKDHA, or GPT2 in IDHWT GBM cells. Mechanistically, loss of BCAT1 increased the NAD+/NADH ratio but impaired oxidative phosphorylation, mTORC1 activity, and nucleotide biosynthesis. These metabolic alterations were synergistically augmented by AKG treatment, thereby causing mitochondrial dysfunction and depletion of cellular building blocks, including ATP, nucleotides, and proteins. Partial restoration of ATP, nucleotides, proteins, and mTORC1 activity by BCKA supplementation prevented IDHWT GBM cell death conferred by the combination of BCAT1 loss and AKG. These findings define a targetable metabolic vulnerability in the most common subset of GBM that is currently incurable. SIGNIFICANCE: Metabolic synthetic lethal screening in IDHWT glioblastoma defines a vulnerability to ΑΚG following BCAT1 loss, uncovering a therapeutic strategy to improve glioblastoma treatment. See related commentary by Meurs and Nagrath, p. 2354.


Assuntos
Glioblastoma , Trifosfato de Adenosina , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Ácidos Cetoglutáricos/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Nucleotídeos , Mutações Sintéticas Letais , Transaminases/genética , Transaminases/metabolismo
12.
Sheng Wu Gong Cheng Xue Bao ; 38(12): 4731-4743, 2022 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-36593206

RESUMO

The tea beverages will be endowed with distinct aroma and taste, as well as various biologically active compounds including probiotic factors, when fermented with lactic acid bacteria (LAB). However, at present, few studies on the dynamics of flavors in tea soup at different fermentation stages were conducted. In this study, the composition of monosaccharides, aromatic components, free amino acids, and organic acids were measured, when the black tea beverages were fermented with Lactobacillus coryniformis FZU63 which was isolated from Chinese traditional kimchi. The results indicated that monosaccharides including glucose, fructose, mannose and xylose in black tea beverages are the main carbon sources for fermentation. In addition, the abundance of aromatic compounds in black tea soup are increased significantly at different fermentation stages, which endow the fermented black tea soup with fruit aroma on the basis of flowery and nutty aroma. Moreover, some bitter amino acids are reduced, whereas the content of sweet and tasty amino acids is elevated. Furthermore, the levels of lactic acid, malic acid, citric acid and other organic acids are accumulated during the fermentation. Additionally, sensory evaluation displays that black tea beverage is acquired with comprehensive high-quality after being fermented for 48 h. This study provides a theoretical basis to steer and control the flavor formation and quality of the fermented tea beverages during LAB fermentation.


Assuntos
Camellia sinensis , Chá , Chá/química , Bebidas/análise , Bebidas/microbiologia , Fermentação , Ácidos , Aminoácidos , Glucose
13.
J Neurochem ; 160(1): 74-87, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34241907

RESUMO

Cell death is a key feature of neurological diseases, including stroke and neurodegenerative disorders. Studies in a variety of ischemic/hypoxic mouse models demonstrate that poly(ADP-ribose) polymerase 1 (PARP-1)-dependent cell death, also named PARthanatos, plays a pivotal role in ischemic neuronal cell death and disease progress. PARthanatos has its unique triggers, processors, and executors that convey a highly orchestrated and programmed signaling cascade. In addition to its role in gene transcription, DNA damage repair, and energy homeostasis through PARylation of its various targets, PARP-1 activation in neuron and glia attributes to brain damage following ischemia/reperfusion. Pharmacological inhibition or genetic deletion of PARP-1 reduces infarct volume, eliminates inflammation, and improves recovery of neurological functions in stroke. Here, we reviewed the role of PARP-1 and PARthanatos in stroke and their therapeutic potential.


Assuntos
AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Parthanatos/fisiologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Humanos
14.
Cell Mol Life Sci ; 79(1): 39, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34921640

RESUMO

Traumatic brain injury (TBI), often induced by sports, car accidents, falls, or other daily occurrences, is a primary non-genetically related risk factor for the development of subsequent neurodegeneration and neuronal cell death. However, the molecular mechanisms underlying neurodegeneration, cell death, and neurobehavioral dysfunction following TBI remain unclear. Here, we found that poly(ADP-ribose) polymerase-1 (PARP-1) was hyperactivated following TBI and its inhibition reduced TBI-induced brain injury. Macrophage migration inhibitory factor (MIF), a newly identified nuclease involved in PARP-1-dependent cell death, was translocated from the cytosol to the nucleus in cortical neurons following TBI and promoted neuronal cell death in vivo. Genetic deletion of MIF protected neurons from TBI-induced dendritic spine loss, morphological complexity degeneration, and subsequent neuronal cell death in mice. Moreover, MIF knockout reduced the brain injury volume and improved long-term animal behavioral rehabilitation. These neuroprotective effects in MIF knockout mice were reversed by the expression of wild-type MIF but not nuclease-deficient MIF mutant. In contrast, genetic deletion of MIF did not alter TBI-induced neuroinflammation. These findings reveal that MIF mediates TBI-induced neurodegeneration, neuronal cell death and neurobehavioral dysfunction through its nuclease activity, but not its pro-inflammatory role. Targeting MIF's nuclease activity may offer a novel strategy to protect neurons from TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Oxirredutases Intramoleculares/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Degeneração Neural/metabolismo , Poli(ADP-Ribose) Polimerase-1/fisiologia , Animais , Morte Celular , Masculino , Camundongos , Camundongos Knockout
15.
Elife ; 102021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779768

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive and highly lethal disease, which warrants the critical need to identify new therapeutic targets. We show that Zinc Fingers and Homeoboxes 2 (ZHX2) is amplified or overexpressed in TNBC cell lines and patients. Functionally, depletion of ZHX2 inhibited TNBC cell growth and invasion in vitro, orthotopic tumor growth, and spontaneous lung metastasis in vivo. Mechanistically, ZHX2 bound with hypoxia-inducible factor (HIF) family members and positively regulated HIF1α activity in TNBC. Integrated ChIP-seq and gene expression profiling demonstrated that ZHX2 co-occupied with HIF1α on transcriptionally active promoters marked by H3K4me3 and H3K27ac, thereby promoting gene expression. Among the identified ZHX2 and HIF1α coregulated genes, overexpression of AP2B1, COX20, KDM3A, or PTGES3L could partially rescue TNBC cell growth defect by ZHX2 depletion, suggested that these downstream targets contribute to the oncogenic role of ZHX2 in an accumulative fashion. Furthermore, multiple residues (R491, R581, and R674) on ZHX2 are important in regulating its phenotype, which correspond with their roles on controlling ZHX2 transcriptional activity in TNBC cells. These studies establish that ZHX2 activates oncogenic HIF1α signaling, therefore serving as a potential therapeutic target for TNBC.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fatores de Transcrição/metabolismo
16.
Molecules ; 26(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34684889

RESUMO

Fengycin, as a lipopeptide produced by Bacillus subtilis, displays potent activity against filamentous fungi, including Aspergillus flavus and Soft-rot fungus, which exhibits a wide range of potential applications in food industries, agriculture, and medicine. To better clarify the regulatory mechanism of fructose on fengycin biosynthesis, the iTRAQ-based proteomic analysis was utilized to investigate the differentially expressed proteins of B. amyloliquefaciens fmb-60 cultivated in ML (without fructose) and MLF (with fructose) medium. The results indicated that a total of 811 proteins, including 248 proteins with differential expression levels (162 which were upregulated (fold > 2) and 86, which were downregulated (fold < 0.5) were detected, and most of the proteins are associated with cellular metabolism, biosynthesis, and biological regulation process. Moreover, the target genes' relative expression was conducted using quantitative real-time PCR to validate the proteomic analysis results. Based on the results of proteome analysis, the supposed pathways of fructose enhancing fengycin biosynthesis in B. amyloliquefaciens fmb-60 can be summarized as improvement of the metabolic process, including cellular amino acid and amide, fatty acid biosynthesis, peptide and protein, nucleotide and nucleobase-containing compound, drug/toxin, cofactor, and vitamin; reinforcement of peptide/protein translation, modification, biological process, and response to a stimulus. In conclusion, this study represents a comprehensive and systematic investigation of the fructose mechanism on improving fengycin biosynthesis in B. amyloliquefaciens, which will provide a road map to facilitate the potential application of fengycin or its homolog in defending against filamentous fungi.


Assuntos
Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Frutose/metabolismo , Lipopeptídeos/metabolismo , Proteômica/métodos
17.
Appl Microbiol Biotechnol ; 105(18): 6921-6930, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34476515

RESUMO

Bacteriocins derived from lactic acid bacteria (LAB) are well recognized as promising food preservative due to high safety and potent antibacterial activity against foodborne pathogens and spoilage bacteria. In this study, an antimicrobial agent-producing strain FZU63 from Chinese sauerkraut was identified as Lactobacillus coryniformis based on physio-biochemical characterization and 16S rDNA sequence analysis. In addition, a bacteriocin was purified from the culture supernatant of L. coryniformis FZU63, and its molecular mass was determined as 1493.709 Da. Moreover, the amino acid sequence of the bacteriocin was predicted to be RQQPMTLDYRW-NH2 using nanoliter/microliter liquid chromatography combined with triple quadrupole-linear ion trap tandem mass spectrometry and was named as Lactocin 63. Furthermore, Lactocin 63 displays potent antimicrobial activity against the tested Gram-positive and negative bacteria based on the results of determining MICs. Subsequently, the action mode of Lactocin 63 against Shewanella putrefaciens was investigated. The results demonstrated that Lactocin 63 targets and is adsorbed onto the bacterial cell wall and membrane and then disrupts cytoplasmic membrane, which is leading to leakage of cytoplasm according to the results of flow cytometry analysis and the observation of cellular ultra-structure using confocal laser microscopy and atomic force microscopy. Collectively, these results are helpful and providing the theoretical base for developing and applying LAB-derived bacteriocins as promising bio-preservatives to combat foodborne pathogens and spoilage bacteria in seafood industries.Key points• A bacteriocin-producing strain Lactobacillus coryniformis was isolated.• A novel bacteriocin produced by Lactobacillus coryniformis FZU63 was characterized.• Action mechanism of the bacteriocin against S. putrefaciens was elucidated in vitro.


Assuntos
Anti-Infecciosos , Bacteriocinas , Shewanella putrefaciens , Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/farmacologia , Lactobacillus
18.
Nat Commun ; 12(1): 2954, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012010

RESUMO

How cancer cells cope with high levels of replication stress during rapid proliferation is currently unclear. Here, we show that macrophage migration inhibitory factor (MIF) is a 3' flap nuclease that translocates to the nucleus in S phase. Poly(ADP-ribose) polymerase 1 co-localizes with MIF to the DNA replication fork, where MIF nuclease activity is required to resolve replication stress and facilitates tumor growth. MIF loss in cancer cells leads to mutation frequency increases, cell cycle delays and DNA synthesis and cell growth inhibition, which can be rescued by restoring MIF, but not nuclease-deficient MIF mutant. MIF is significantly upregulated in breast tumors and correlates with poor overall survival in patients. We propose that MIF is a unique 3' nuclease, excises flaps at the immediate 3' end during DNA synthesis and favors cancer cells evading replication stress-induced threat for their growth.


Assuntos
Neoplasias da Mama/metabolismo , Replicação do DNA/fisiologia , Endonucleases Flap/metabolismo , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , DNA/química , DNA/metabolismo , Dano ao DNA , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Replicação do DNA/genética , Feminino , Endonucleases Flap/deficiência , Endonucleases Flap/genética , Técnicas de Inativação de Genes , Instabilidade Genômica , Células HCT116 , Humanos , Oxirredutases Intramoleculares/deficiência , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/deficiência , Fatores Inibidores da Migração de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação de Ácido Nucleico , Poli(ADP-Ribose) Polimerase-1/metabolismo , Fase S , Especificidade por Substrato
19.
Mol Neurodegener ; 16(1): 25, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853653

RESUMO

BACKGROUND: Apoptosis-inducing factor (AIF), as a mitochondrial flavoprotein, plays a fundamental role in mitochondrial bioenergetics that is critical for cell survival and also mediates caspase-independent cell death once it is released from mitochondria and translocated to the nucleus under ischemic stroke or neurodegenerative diseases. Although alternative splicing regulation of AIF has been implicated, it remains unknown which AIF splicing isoform will be induced under pathological conditions and how it impacts mitochondrial functions and neurodegeneration in adult brain. METHODS: AIF splicing induction in brain was determined by multiple approaches including 5' RACE, Sanger sequencing, splicing-specific PCR assay and bottom-up proteomic analysis. The role of AIF splicing in mitochondria and neurodegeneration was determined by its biochemical properties, cell death analysis, morphological and functional alterations and animal behavior. Three animal models, including loss-of-function harlequin model, gain-of-function AIF3 knockin model and conditional inducible AIF splicing model established using either Cre-loxp recombination or CRISPR/Cas9 techniques, were applied to explore underlying mechanisms of AIF splicing-induced neurodegeneration. RESULTS: We identified a nature splicing AIF isoform lacking exons 2 and 3 named as AIF3. AIF3 was undetectable under physiological conditions but its expression was increased in mouse and human postmortem brain after stroke. AIF3 splicing in mouse brain caused enlarged ventricles and severe neurodegeneration in the forebrain regions. These AIF3 splicing mice died 2-4 months after birth. AIF3 splicing-triggered neurodegeneration involves both mitochondrial dysfunction and AIF3 nuclear translocation. We showed that AIF3 inhibited NADH oxidase activity, ATP production, oxygen consumption, and mitochondrial biogenesis. In addition, expression of AIF3 significantly increased chromatin condensation and nuclear shrinkage leading to neuronal cell death. However, loss-of-AIF alone in harlequin or gain-of-AIF3 alone in AIF3 knockin mice did not cause robust neurodegeneration as that observed in AIF3 splicing mice. CONCLUSIONS: We identified AIF3 as a disease-inducible isoform and established AIF3 splicing mouse model. The molecular mechanism underlying AIF3 splicing-induced neurodegeneration involves mitochondrial dysfunction and AIF3 nuclear translocation resulting from the synergistic effect of loss-of-AIF and gain-of-AIF3. Our study provides a valuable tool to understand the role of AIF3 splicing in brain and a potential therapeutic target to prevent/delay the progress of neurodegenerative diseases.


Assuntos
Processamento Alternativo , Fator de Indução de Apoptose/fisiologia , Mitocôndrias/metabolismo , Degeneração Neural/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Animais , Fator de Indução de Apoptose/deficiência , Fator de Indução de Apoptose/genética , Células Cultivadas , Criança , Modelos Animais de Doenças , Éxons/genética , Feminino , Lobo Frontal/química , Mutação com Ganho de Função , Edição de Genes , Técnicas de Introdução de Genes , Humanos , Lactente , Recém-Nascido , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Pessoa de Meia-Idade , Neurônios/metabolismo , Oxirredução , Consumo de Oxigênio , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia
20.
J Immunol ; 206(5): 936-940, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33504619

RESUMO

Dysregulated IL-17 expression is central to the pathogenesis of several inflammatory disorders, including ulcerative colitis. We have shown earlier that SUMOylation of ROR-γt, the transcription factor for IL-17, regulates colonic inflammation. In this study, we show that the expression of Ubc9, the E2 enzyme that targets ROR-γt for SUMOylation, is significantly reduced in the colonic mucosa of ulcerative colitis patients. Mechanistically, we demonstrate that hypoxia-inducible factor 1α (HIF-1α) binds to a CpG island within the Ubc9 gene promoter, resulting in its hypermethylation and reduced Ubc9 expression. CRISPR-Cas9-mediated inhibition of HIF-1α normalized Ubc9 and attenuated IL-17 expression in Th17 cells and reduced diseases severity in Rag1 -/- mice upon adoptive transfer. Collectively, our study reveals a novel epigenetic mechanism of regulation of ROR-γt that could be exploited in inflammatory diseases.


Assuntos
Colite Ulcerativa/genética , Metilação de DNA/genética , Hipóxia/genética , Interleucina-17/genética , Regiões Promotoras Genéticas/genética , Enzimas de Conjugação de Ubiquitina/genética , Animais , Colite Ulcerativa/patologia , Colo/patologia , Humanos , Hipóxia/patologia , Inflamação/genética , Inflamação/patologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Células Th17
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA