Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 12: 647280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995062

RESUMO

Remdesivir (RDV) has generated much anticipation for its moderate effect in treating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the unsatisfactory survival rates of hospitalized patients limit its application to the treatment of coronavirus disease 2019 (COVID-19). Therefore, improvement of antiviral efficacy of RDV is urgently needed. As a typical nucleotide analog, the activation of RDV to bioactive triphosphate will affect the biosynthesis of endogenous ribonucleotides (RNs) and deoxyribonucleotides (dRNs), which are essential to RNA and DNA replication in host cells. The imbalance of RN pools will inhibit virus replication as well. In order to investigate the effects of RDV on cellular nucleotide pools and on RNA transcription and DNA replication, cellular RNs and dRNs concentrations were measured by the liquid chromatography-mass spectrometry method, and the synthesis of RNA and DNA was monitored using click chemistry. The results showed that the IC50 values for BEAS-2B cells at exposure durations of 48 and 72 h were 25.3 ± 2.6 and 9.6 ± 0.7 µM, respectively. Ten (10) µM RDV caused BEAS-2B arrest at S-phase and significant suppression of RNA and DNA synthesis after treatment for 24 h. In addition, a general increase in the abundance of nucleotides and an increase of specific nucleotides more than 2 folds were observed. However, the variation of pyrimidine ribonucleotides was relatively slight or even absent, resulting in an obvious imbalance between purine and pyrimidine ribonucleotides. Interestingly, the very marked disequilibrium between cytidine triphosphate (CTP) and cytidine monophosphate might result from the inhibition of CTP synthase. Due to nucleotides which are also precursors for the synthesis of viral nucleic acids, the perturbation of nucleotide pools would block viral RNA replication. Considering the metabolic vulnerability of endogenous nucleotides, exacerbating the imbalance of nucleotide pools imparts great promise to enhance the efficacy of RDV, which possibly has special implications for treatment of COVID-19.

2.
J Pharm Biomed Anal ; 190: 113579, 2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-32871420

RESUMO

Bisphosphonates (BPs) have broad medical applications against osteoporosis, bone metastasis and Paget's disease. The BP-related jaw osteonecrosis limits their use extensively and has a causal relationship with the process of drug disposition, such as deposition on bone and slow elimination rate. Thus it is imperative to accurately determine BP levels in either clinical or pharmacological/toxicological studies. The ability of trimethylsilyl diazomethane (TMSD) to alkylate the hydroxyls in phosphoric groups is an advantage in terms of decreasing polarity and enhancing mass response of BPs. There are, however, practical limitations to the cumbersome sample preparation procedure, the prolonged reaction time, the by-products and the obstacle to ionization. To overcome these disadvantages, a simplified and rapid precolumn derivatization method with N-(tert-Butyldimethylsilyl)-N-methyl-trifluoroacetamide (MTBSTFA) to quantify etidronate, clodronate, alendronate and zoledronate BPs in rat plasma was established in this work. The derivatization reaction was conducted within 2 min at room temperature, and the unitary di-tert-butyldimethylsilyl (di-tBDMS) derivative was obtained for each BP. Derivatives were separated on a XTerra® MS C8 column (2.1 × 50 mm, 3.5 µm) with the mobile phase of 5 mM ammonium acetate buffer (pH 8.5) and acetonitrile, then detected using electrospray ionization tandem mass spectrometry in negative mode. An easy extraction process instead of the time-consuming solid-phase extraction (SPE) was employed for plasma treatment. The proposed method showed good linearity for BPs over the range of 2-500 ng/mL in 20 µL plasma and high sensitivity owing to the larger molecular ions, higher ionization capacity and more stable fragments of di-tBDMS derivatives. The intra- and inter-batch precision were <13.1 %, and the accuracy ranged within ±10 %. The extraction recovery varied from 75.4 to 88.0 %. The optimized method was successfully applied to characterize the pharmacokinetic profile of zoledronate in rats. Moreover, it is a promising approach for the determination of other phosphoric acid-containing metabolites.


Assuntos
Difosfonatos , Preparações Farmacêuticas , Acetamidas , Animais , Cromatografia Líquida , Fluoracetatos , Ratos , Reprodutibilidade dos Testes
3.
J Neuroinflammation ; 15(1): 186, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925377

RESUMO

BACKGROUND: Neonatal hypoxic-ischemic brain damage, characterized by tissue loss and neurologic dysfunction, is a leading cause of mortality and a devastating disease of the central nervous system. We have previously shown that vitexin has been attributed various medicinal properties and has been demonstrated to have neuroprotective roles in neonatal brain injury models. In the present study, we continued to reinforce and validate the basic understanding of vitexin (45 mg/kg) as a potential treatment for epilepsy and explored its possible underlying mechanisms. METHODS: P7 Sprague-Dawley (SD) rats that underwent right common carotid artery ligation and rat brain microvascular endothelial cells (RBMECs) were used for the assessment of Na+-K+-Cl- co-transporter1 (NKCC1) expression, BBB permeability, cytokine expression, and neutrophil infiltration by western blot, q-PCR, flow cytometry (FCM), and immunofluorescence respectively. Furthermore, brain electrical activity in freely moving rats was recorded by electroencephalography (EEG). RESULTS: Our data showed that NKCC1 expression was attenuated in vitexin-treated rats compared to the expression in the HI group in vivo. Oxygen glucose deprivation/reoxygenation (OGD) was performed on RBMECs to explore the role of NKCC1 and F-actin in cytoskeleton formation with confocal microscopy, N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide, and FCM. Concomitantly, treatment with vitexin effectively alleviated OGD-induced NKCC1 expression, which downregulated F-actin expression in RBMECs. In addition, vitexin significantly ameliorated BBB leakage and rescued the expression of tight junction-related protein ZO-1. Furthermore, inflammatory cytokine and neutrophil infiltration were concurrently and progressively downregulated with decreasing BBB permeability in rats. Vitexin also significantly suppressed brain electrical activity in neonatal rats. CONCLUSIONS: Taken together, these results confirmed that vitexin effectively alleviates epilepsy susceptibility through inhibition of inflammation along with improved BBB integrity. Our study provides a strong rationale for the further development of vitexin as a promising therapeutic candidate treatment for epilepsy in the immature brain.


Assuntos
Anticonvulsivantes/uso terapêutico , Apigenina/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Hipóxia-Isquemia Encefálica/complicações , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Animais , Animais Recém-Nascidos , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Cloretos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/deficiência , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , Interleucina-3/genética , Interleucina-3/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética , Proteína da Zônula de Oclusão-1/metabolismo
4.
Brain Res Bull ; 130: 188-199, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28161194

RESUMO

Hypoxia-ischemia brain damage (HIBD) is one of prevalent causes of neonatal mortality and morbidity. Our data demonstrated that hypoxia-ischemia (HI) induced Na+-K+-Cl--co-transporter 1 (NKCC1) increasing in hippocampus. Previous studies demonstrated that NKCC1 regulates various stages of neurogenesis. In this study, we studied the role of increased NKCC1 in regulating of HI-induced neurogenesis. HIBD model was established in 7days old Sprague-Dawley rat pup, and the expression of NKCC1 was detected by western blot and qPCR. Brain electrical activity in freely rats was monitored by electroencephalography (EEG) recordings. HI-induced neurogenesis was detected by immunofluorescence staining. Neurobehavioral test was to investigate the neuro-protective role of bumetanide, an inhibitor of NKCC1, on neonatal rats after HI. The results showed that bumetanide treatment significantly reduced brain electrical activity and the seizure stage of epilepsy induced by pentylenetetrazol (PTZ) in vivo after HI. In addition, bumetanide restored aberrant hippocampal neurogenesis and associated cognitive function. Our data demonstrated that bumetanide reduces the susceptibility of epilepsy induced by PTZ in rats suffering from HI injury during neonatal period via restoring the ectopic newborn neurons in dentate gyrus (DG) and cognitive function.


Assuntos
Anticonvulsivantes/administração & dosagem , Bumetanida/administração & dosagem , Hipocampo/fisiopatologia , Hipóxia-Isquemia Encefálica/complicações , Neurogênese/efeitos dos fármacos , Convulsões/fisiopatologia , Animais , Animais Recém-Nascidos , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Eletroencefalografia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Memória/efeitos dos fármacos , Pentilenotetrazol/administração & dosagem , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/complicações , Convulsões/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA