Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(36): 47226-47241, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39193631

RESUMO

The development of multifunctional wound adhesives is critical in clinical settings due to the scarcity of dressings with effective adhesive properties while protecting against infection by drug-resistant bacteria. Polysaccharide and gelatin-based hydrogels, known for their biocompatibility and bioactivity, assist in wound healing. This study introduces a multifunctional bioadhesive hydrogel developed through dynamic covalent bonding and light-triggered covalent bonding, comprising oxidized hyaluronic acid, methacrylated gelatin, and the bacteriocin recently discovered by our lab, named jileicin (JC). The adhesion strength of the hydrogel, measured at 180 kPa, was 4.35 times higher than that of the fibrin glue. Furthermore, the hydrogel demonstrated robust platelet adhesion, procoagulant activity, and outstanding hemostatic properties in a mouse liver injury model. Incorporating JC significantly enhanced the phagocytosis and bactericidal capabilities of the macrophages. This immunomodulatory function on host cells, coupled with its potent bacterial membrane-disrupting ability, makes JC an effective killer against methicillin-resistant Staphylococcus aureus. In wound repair experiments on diabetic mice with infected full-thickness skin defects, the hydrogel treatment group showed a notable reduction in bacterial load, accelerated M2-type macrophage polarization, diminished inflammation, and hastened wound healing. Owing to its outstanding biocompatibility, antibacterial activity, and controlled adhesion, this hydrogel presents a promising therapeutic option for treating infected skin wounds.


Assuntos
Antibacterianos , Diabetes Mellitus Experimental , Gelatina , Ácido Hialurônico , Hidrogéis , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Gelatina/química , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Antibacterianos/química , Antibacterianos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Humanos , Masculino
3.
Adv Sci (Weinh) ; 11(30): e2401793, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874469

RESUMO

The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram-negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism without detectable resistance. Meanwhile, an SR25-functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25-incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens.


Assuntos
Diabetes Mellitus Experimental , Modelos Animais de Doenças , Cicatrização , Animais , Camundongos , Cicatrização/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana
4.
Vet Res ; 55(1): 52, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622656

RESUMO

Clostridium perfringens (C. perfringens) infection is recognized as one of the most challenging issues threatening food safety and perplexing agricultural development. To date, the molecular mechanisms of the interactions between C. perfringens and the host remain poorly understood. Here, we show that stimulator of interferon genes (STING)-dependent trained immunity protected against C. perfringens infection through mTOR signaling. Heat-killed Candida albicans (HKCA) training elicited elevated TNF-α and IL-6 production after LPS restimulation in mouse peritoneal macrophages (PM). Although HKCA-trained PM produced decreased levels of TNF-α and IL-6, the importance of trained immunity was demonstrated by the fact that HKCA training resulted in enhanced bacterial phagocytic ability and clearance in vivo and in vitro during C. perfringens infection. Interestingly, HKCA training resulted in the activation of STING signaling. We further demonstrate that STING agonist DMXAA is a strong inducer of trained immunity and conferred host resistance to C. perfringens infection in PM. Importantly, corresponding to higher bacterial burden, reduction in cytokine secretion, phagocytosis, and bacterial killing were shown in the absence of STING after HKCA training. Meanwhile, the high expression levels of AKT/mTOR/HIF1α were indeed accompanied by an activated STING signaling under HKCA or DMXAA training. Moreover, inhibiting mTOR signaling with rapamycin dampened the trained response to LPS and C. perfringens challenge in wild-type (WT) PM after HKCA training. Furthermore, STING­deficient PM presented decreased levels of mTOR signaling-related proteins. Altogether, these results support STING involvement in trained immunity which protects against C. perfringens infection via mTOR signaling.


Assuntos
Infecções por Clostridium , Animais , Camundongos , Infecções por Clostridium/veterinária , Clostridium perfringens , Interleucina-6 , Lipopolissacarídeos , Serina-Treonina Quinases TOR , Imunidade Treinada , Fator de Necrose Tumoral alfa/metabolismo
5.
PLoS Pathog ; 20(1): e1011918, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241414

RESUMO

Bacterial persister cells, a sub-population of dormant phenotypic variants highly tolerant to antibiotics, present a significant challenge for infection control. Investigating the mechanisms of antibiotic persistence is crucial for developing effective treatment strategies. Here, we found a significant association between tolerance frequency and previous infection history in bovine mastitis. Previous S. aureus infection led to S. aureus tolerance to killing by rifampicin in subsequent infection in vivo and in vitro. Actually, the activation of trained immunity contributed to rifampicin persistence of S. aureus in secondary infection, where it reduced the effectiveness of antibiotic treatment and increased disease severity. Mechanically, we found that S. aureus persistence was mediated by the accumulation of fumarate provoked by trained immunity. Combination therapy with metformin and rifampicin promoted eradication of persisters and improved the severity of recurrent S. aureus infection. These findings provide mechanistic insight into the relationship between trained immunity and S. aureus persistence, while providing proof of concept that trained immunity is a therapeutic target in recurrent bacterial infections involving persistent pathogens.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Feminino , Bovinos , Staphylococcus aureus/fisiologia , Rifampina/farmacologia , Rifampina/uso terapêutico , Imunidade Treinada , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Bactérias
6.
J Basic Microbiol ; 54(8): 866-72, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23775861

RESUMO

The effects of the fermentation conditions on both the biomass yield and the organic selenium yield of Thelephora ganbajun zang were studied. The components most suitable for the submerged fermentation medium were examined using the orthogonal array method; they comprised sucrose at 30 g L(-1) , carbamide 1 g L(-1) , corn steep liquor 8 g L(-1) , MgSO4 ·7H2 O 0.3 g L(-1) , KH2 PO4 0.5 g L(-1) , and NaCl 5 g L(-1) . The optimum cultivation conditions that resulted in maximal biomass yield were obtained using the response surface methodology (RSM). The conditions were as follows: initial pH, 5.84; temperature, 26.16 °C; and rotation speed, 170 rpm. Feeding sucrose led to a higher biomass yield, with a maximum of 21.20 g L(-1) . The biomass yield and the organic Se yield of T. ganbajun could reach 10.8 g L(-1) and 3256.07 mg kg(-1) , respectively, in a culture medium supplemented with 200 mg L(-1) sodium selenite (Na2 SeO3 ), which was added to the medium at 36 h after inoculation. Application of the orthogonal array method and RSM gave rise to a significant enhancement in the biomass yield of T. ganbajun. The results of these experiments indicate that T. ganbajun is a promising microorganism for selenium enrichment.


Assuntos
Agaricales/crescimento & desenvolvimento , Agaricales/metabolismo , Fermentação , Agricultura , Biomassa , Meios de Cultura , Selênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA