Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(12): 5073-5086, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37572366

RESUMO

BACKGROUND: As a highly prevalent epidemic disease of potato, late blight caused by Phytophthora infestans poses a serious threat to potato yield and quality. At present, chemical fungicides are mainly used to control potato late blight, but long-term overuse of chemical fungicides may lead to environmental pollution and human health threats. Endophytes, natural resources for plant diseases control, can promote plant growth, enhance plant resistance, and secrete antifungal substances. Therefore, there is an urgent need to find some beneficial endophytes to control potato late blight. RESULTS: We isolated a strain of Bacillus subtilis H17-16 from potato healthy roots. It can significantly inhibit mycelial growth, sporangia germination and the pathogenicity of Phytophthora infestans, induce the resistance of potato to late blight, and promote potato growth. In addition, H17-16 has the ability to produce protease, volatile compounds (VOCs) and form biofilms. After H17-16 treatment, most of the genes involved in metabolism, virulence and drug resistance of Phytophthora infestans were down-regulated significantly, and the genes related to ribosome biogenesis were mainly up-regulated. Moreover, field and postharvest application of H17-16 can effectively reduce the occurrence of potato late blight, and the combination of H17-16 with chitosan or chemical fungicides had a better effect than single H17-16. CONCLUSION: Our results reveal that Bacillus subtilis H17-16 has great potential as a natural fungicide for controlling potato late blight, laying a theoretical basis for its development as a biological control agent. © 2023 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Phytophthora infestans , Solanum tuberosum , Humanos , Phytophthora infestans/genética , Solanum tuberosum/genética , Bacillus subtilis , Fungicidas Industriais/farmacologia , Raízes de Plantas , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Autophagy ; 19(11): 2997-3013, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37424101

RESUMO

Proteolysis-targeting chimeras (PROTACs) based on the ubiquitin-proteasome system have made great progress in the field of drug discovery. There is mounting evidence that the accumulation of aggregation-prone proteins or malfunctioning organelles is associated with the occurrence of various age-related neurodegenerative disorders and cancers. However, PROTACs are inefficient for the degradation of such large targets due to the narrow entrance channel of the proteasome. Macroautophagy (hereafter referred to as autophagy) is known as a self-degradative process involved in the degradation of bulk cytoplasmic components or specific cargoes that are sequestered into autophagosomes. In the present study, we report the development of a generalizable strategy for the targeted degradation of large targets. Our results suggested that tethering large target models to phagophore-associated ATG16L1 or LC3 induced targeted autophagic degradation of the large target models. Furthermore, we successfully applied this autophagy-targeting degradation strategy to the targeted degradation of HTT65Q aggregates and mitochondria. Specifically, chimeras consisting of polyQ-binding peptide 1 (QBP) and ATG16L1-binding peptide (ABP) or LC3-interacting region (LIR) induced targeted autophagic degradation of pathogenic HTT65Q aggregates; and the chimeras consisting of mitochondria-targeting sequence (MTS) and ABP or LIR promoted targeted autophagic degradation of dysfunctional mitochondria, hence ameliorating mitochondrial dysfunction in a Parkinson disease cell model and protecting cells from apoptosis induced by the mitochondrial stress agent FCCP. Therefore, this study provides a new strategy for the selective proteolysis of large targets and enrich the toolkit for autophagy-targeting degradation.Abbreviations: ABP: ATG16L1-binding peptide; ATG16L1: autophagy related 16 like 1; ATTEC: autophagy-tethering compound; AUTAC: autophagy-targeting chimera; AUTOTAC: autophagy-targeting chimera; Baf A1: bafilomycin A1; BCL2: BCL2 apoptosis regulator; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CPP: cell-penetrating peptide; CQ: chloroquine phosphate; DAPI: 4',6-diamidino-2-phenylindole; DCM: dichloromethane; DMF: N,N-dimethylformamide; DMSO: dimethyl sulfoxide; EBSS: Earle's balanced salt solution; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; FITC: fluorescein-5-isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK293: human embryonic kidney 293; HEK293T: human embryonic kidney 293T; HPLC: high-performance liquid chromatography; HRP: horseradish peroxidase; HTT: huntingtin; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFF: mitochondrial fission factor; MTS: mitochondria-targeting sequence; NBR1: NBR1 autophagy cargo receptor; NLRX1: NLR family member X1; OPTN: optineurin; P2A: self-cleaving 2A peptide; PB1: Phox and Bem1p; PBS: phosphate-buffered saline; PE: phosphatidylethanolamine; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; PROTACs: proteolysis-targeting chimeras; QBP: polyQ-binding peptide 1; SBP: streptavidin-binding peptide; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SPATA33: spermatogenesis associated 33; TIMM23: translocase of inner mitochondrial membrane 23; TMEM59: transmembrane protein 59; TOMM20: translocase of outer mitochondrial membrane 20; UBA: ubiquitin-associated; WT: wild type.


Assuntos
Autofagia , Agregados Proteicos , Humanos , Masculino , Proteínas Relacionadas à Autofagia/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona , Células HEK293 , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ubiquitinas/metabolismo
3.
J Sci Food Agric ; 103(13): 6416-6428, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37209269

RESUMO

BACKGROUND: Phytophthora infestans causes late blight, threatening potato production. The tropane alkaloid scopolamine from some industrial plants (Datura, Atropa, etc.) has a broad-spectrum bacteriostatic effect, but its effect on P. infestans is unknown. RESULTS: In the present study, scopolamine inhibited the mycelial growth of phytopathogenic oomycete P. infestans, and the half-maximal inhibitory concentration (IC50 ) was 4.25 g L-1 . The sporangia germination rates were 61.43%, 16.16%, and 3.99% at concentrations of zero (control), 0.5 IC50 , and IC50 , respectively. The sporangia viability of P. infestans was significantly reduced after scopolamine treatment through propidium iodide and fluorescein diacetate staining, speculating that scopolamine destroyed cell membrane integrity. The detached potato tuber experiment demonstrated that scopolamine lessened the pathogenicity of P. infestans in potato tubers. Under stress conditions, scopolamine showed good inhibition of P. infestans, indicating that scopolamine could be used in multiple adverse conditions. The combination effect of scopolamine and the chemical pesticide Infinito on P. infestans was more effective than the use of scopolamine or Infinito alone. Moreover, transcriptome analysis suggested that scopolamine leaded to a downregulation of most P. infestans genes, functioning in cell growth, cell metabolism, and pathogenicity. CONCLUSION: To our knowledge, this is the first study to detect scopolamine inhibitory activity against P. infestans. Also, our findings highlight the potential of scopolamine as an eco-friendly option for controlling late blight in the future. © 2023 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA