Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 951: 175506, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151631

RESUMO

The Great Wall, as a World Heritage Site, is constructed with rammed earth and is currently facing the threat of erosion from wind and rain. Vascular plants and biocrusts are the main coverings of the Great Wall, and their role in mitigating soil erosion has attracted increased amounts of attention; however, the understanding of their underlying mechanisms is limited. Here, we conducted an extensive survey of vascular plants, biocrusts, soil properties (soil organic and inorganic binding materials, aggregates, and texture), soil aggregate stability, and soil erodibility at the top of the Great Wall in four different defensive zones in Northwest China. Vascular plants covered 13.6 % to 63.9 % of the tops of the Great Wall, and their rich diversity was mainly derived from perennial herbs. Moss, lichen, and cyanobacterial crusts collectively covered 36.3 % to 67.8 % of the top of the Great Wall. Redundancy analysis and structural equation modeling revealed that the synergistic effects of vascular plants and biocrusts enhanced soil aggregation stability (including geometric mean diameter, GMD; water-stable macroaggregate content, R) by increasing the accumulation of soil organic carbon (SOC), amorphous iron oxide (Feo), and amorphous alumina (Alo) and promoting the formation of macroaggregates (ASD>0.25 mm) and microaggregates (ASD0.053-0.25 mm). Furthermore, soil erodibility was primarily influenced negatively by the synergistic promotion of SOC accumulation by vascular plants and biocrusts and positively by the reduction in soil sand (PSD>0.05 mm) content by biocrusts. Our work highlights the mechanisms and importance of vascular plants and biocrusts as natural covers for altering the intrinsic properties of soil for the protection of the Great Wall. These findings provide reliable theoretical support for the protection of the Great Wall from erosion by vascular plants and biocrusts and offer new insights for the conservation of global earthen sites and similar wall habitats.

2.
Front Nutr ; 11: 1340153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362100

RESUMO

Introduction: There are no standardized assessment criteria for selecting nutritional risk screening tools or indicators to assess reduced muscle mass (RMM) in the Global Leadership Initiative on Malnutrition (GLIM) criteria. We aimed to compare the consistency of different GLIM criteria with Subjective Global Assessment (SGA) and protein-energy wasting (PEW). Methods: In this study, nutritional risk screening 2002 first four questions (NRS-2002-4Q), Nutritional Risk Screening 2002 (NRS-2002), Malnutrition Universal Screening Tool (MUST), and Mini-Nutritional Assessment Short-Form (MNA-SF) tools were used as the first step of nutritional risk screening for the GLIM. The RMM is expressed using different metrics. The SGA and PEW were used to diagnose patients and classify them as malnourished and non-malnourished. Kappa (κ) tests were used to compare the concordance between the SGA, PEW, and GLIM of each combination of screening tools. Results: A total of 157 patients were included. Patients with Chronic kidney disease (CKD) stage 1-3 accounted for a large proportion (79.0%). The prevalence rates of malnutrition diagnosed using the SGA and PEW were 18.5% and 19.7%, respectively. The prevalence of GLIM-diagnosed malnutrition ranges from 5.1% to 37.6%, depending on the different screening methods for nutritional risk and the different indicators denoting RMM. The SGA was moderately consistent with the PEW (κ = 0.423, p < 0.001). The consistency among the GLIM, SGA, and PEW was generally low. Using the NRS-2002-4Q to screen for nutritional risk, GLIM had the best agreement with SGA and PEW when skeletal muscle index (SMI), fat-free mass index (FFMI), and hand grip strength (HGS) indicated a reduction in muscle mass (SGA: κ = 0.464, 95% CI 0.28-0.65; PEW: κ = 0.306, 95% CI 0.12-0.49). Conclusion: The concordance between the GLIM criteria and the SGA and PEW depended on the screening tool used in the GLIM process. The inclusion of RMM in the GLIM framework is important. The addition of HGS could further improve the performance of the GLIM standard compared to the use of body composition measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA