RESUMO
This study aims to establish whether adrenomedullin (ADM) is capable to restore the steroidogenic functions of Leydig cells by suppressing transforming growth factor-ß1 (TGF-ß1) through Hippo signaling. Primary Leydig cells were treated with lipopolysaccharide (LPS), an adeno-associated virus vector that expressed ADM (Ad-ADM) or sh-RNA of TGF-ß1 (Ad-sh-TGF-ß1). The cell viability and medium concentrations of testosterone were detected. Gene expression and protein levels were determined for steroidogenic enzymes, TGF-ß1, RhoA, YAP, TAZ and TEAD1. The role of Ad-ADM in the regulation of TGF-ß1 promoter was confirmed by ChIP and Co-IP. Similar to Ad-sh-TGF-ß1, Ad-ADM mitigated the decline in the number of Leydig cells and plasma concentrations of testosterone by restoring the gene and protein levels of SF-1, LRH1, NUR77, StAR, P450scc, 3ß-HSD, CYP17 and 17ß-HSD. Similar to Ad-sh-TGF-ß1, Ad-ADM not only inhibited the LPS-induced cytotoxicity and cell apoptosis but also restored the gene and protein levels of SF-1, LRH1, NUR77, StAR, P450scc, 3ß-HSD, CYP17 and 17ß-HSD, along with the medium concentrations of testosterone in LPS-induced Leydig cells. Like Ad-sh-TGF-ß1, Ad-ADM improved LPS-induced TGF-ß1 expression. In addition, Ad-ADM suppressed RhoA activation, enhanced the phosphorylation of YAP and TAZ, reduced the expression of TEAD1 which interacted with HDAC5 and then bound to TGF-ß1 gene promoter in LPS-exposed Leydig cells. It is thus suspected that ADM can exert anti-apoptotic effect to restore the steroidogenic functions of Leydig cells by suppressing TGF-ß1 through Hippo signaling.
Assuntos
Células Intersticiais do Testículo , Fator de Crescimento Transformador beta1 , Masculino , Humanos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Via de Sinalização Hippo , Adrenomedulina/genética , Adrenomedulina/metabolismo , Adrenomedulina/farmacologia , Esteroide 17-alfa-Hidroxilase , Lipopolissacarídeos/farmacologia , Testosterona/metabolismoRESUMO
Adrenomedullin (ADM) has beneficial effects on Leydig cells under pathological conditions, including lipopolysaccharide (LPS)-induced orchitis. Our previous studies demonstrated that ADM exerts a restorative effect on steroidogenesis in LPS-treated primary rat Leydig cells by attenuating oxidative stress, inflammation and apoptosis. In this study, we aim to investigate whether ADM inhibits Leydig cell dysfunction by rescuing steroidogenic enzymes in vivo. Rats were administered with LPS and injected with Ad-ADM, an adeno-associated virus vector that expressed ADM. Then, rat testes were collected for 3ß-hydroxysteroid dehydrogenase (3ß-HSD) immunofluorescence staining. Steroidogenic enzymes or steroidogenic regulatory factors or protein, including steroidogenic factor-1 (SF-1), liver receptor homologue-1 (LRH1), Nur77, steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side chain cleavage enzyme (P450scc), 3ß-HSD, cytochrome P450 17α-hydroxylase/17, 20 lyase (CYP17) and 17ß-hydroxysteroid dehydrogenase (17ß-HSD), were detected via gene expression profiling and western blot analysis. Plasma testosterone concentrations were measured. Results showed that ADM may inhibit Leydig cell dysfunction by rescuing steroidogenic enzymes and steroidogenic regulatory factors in vivo. The reduction in the number of Leydig cells after LPS exposure was reversed by ADM. ADM rescued the gene or protein levels of SF-1, LRH1, Nur77, StAR, P450scc, 3ß-HSD, CYP17 and 17ß-HSD and plasma testosterone concentrations. To summarize ADM could rescue some important steroidogenic enzymes, steroidogenic regulatory factors and testosterone production in Leydig cells in vivo.