Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526838

RESUMO

Inter-subspecific indica-japonica hybrid rice (Oryza sativa) has the potential for increased yields over traditional indica intra-subspecies hybrid rice, but limited yield of F1 hybrid seed production (FHSP) hinders the development of indica-japonica hybrid rice breeding. Diurnal flower-opening time (DFOT) divergence between indica and japonica rice has been a major contributing factor to this issue, but few DFOT genes have been cloned. Here, we found that manipulating the expression of jasmonate (JA) pathway genes can effectively modulate DFOT to improve the yield of FHSP in rice. Treating japonica cultivar Zhonghua 11 (ZH11) with methyl jasmonate (MeJA) substantially advanced DFOT. Furthermore, overexpressing the JA biosynthesis gene OPDA REDUCTASE 7 (OsOPR7) and knocking out the JA inactivation gene CHILLING TOLERANCE 1 (OsHAN1) in ZH11 advanced DFOT by 1- and 2-h respectively; and knockout of the JA signal suppressor genes JASMONATE ZIM-DOMAIN PROTEIN 7 (OsJAZ7) and OsJAZ9 resulted in 50-min and 1.5-h earlier DFOT respectively. The yields of FHSP using japonica male-sterile lines GAZS with manipulated JA pathway genes were significantly higher than that of GAZS wildtype. Transcriptome analysis, cytological observations, measurements of elastic modulus and determination of cell wall components indicated that the JA pathway could affect the loosening of the lodicule cell walls by regulating their composition through controlling sugar metabolism, which in turn influences DFOT. This research has vital implications for breeding japonica rice cultivars with early DFOT to facilitate indica-japonica hybrid rice breeding.

2.
Haematologica ; 109(3): 846-856, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37646662

RESUMO

Primary mediastinal B-cell lymphoma (PMBCL) is a distinct clinicopathologic entity. Currently, there is a paucity of randomized prospective data to inform on optimal front-line chemoimmunotherapy (CIT) and use of consolidative mediastinal radiation (RT). To assess if distinct CIT approaches are associated with disparate survival outcomes, we performed a systematic review and meta-analysis comparing dose-intensive (DI-CIT) versus standard CIT for the front-line treatment of PMBCL. Standard approach (S-CIT) was defined as R-CHOP-21/CHOP-21, with or without RT. DI-CIT were defined as regimens with increased frequency, dose, and/or number of systemic agents. We reviewed data on 4,068 patients (2,517 DI-CIT; 1,551 S-CIT) with a new diagnosis of PMBCL. Overall survival for DI-CIT patients was 88% (95% CI: 85-90) compared to 80% for the S-CIT cohort (95% CI: 74-85). Meta-regression revealed an 8% overall survival (OS) benefit for the DI-CIT group (P<0.01). Survival benefit was maintained when analyzing rituximab only regimens; OS was 91% (95% CI: 89-93) for the rituximab-DI-CIT arm compared to 86% (95% CI: 82-89) for the R-CHOP-21 arm (P=0.03). Importantly, 55% (95% CI: 43-65) of the S-CIT group received RT compared to 22% (95% CI: 15-31) of DI-CIT patients (meta-regression P<0.01). To our knowledge, this is the largest meta-analysis reporting efficacy outcomes for the front-line treatment of PMBCL. DI-CIT demonstrates a survival benefit, with significantly less radiation exposure, curtailing long-term toxicities associated with radiotherapy. As we await results of randomized prospective trials, our study supports the use of dose-intensive chemoimmunotherapy for the treatment of PMBCL.


Assuntos
Linfoma de Células B , Exposição à Radiação , Humanos , Estudos Prospectivos , Rituximab/uso terapêutico , Linfócitos B , Linfoma de Células B/tratamento farmacológico
3.
Phys Rev E ; 108(5): L052105, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115520

RESUMO

Annealing has proven highly successful in finding minima in a cost landscape. Yet, depending on the landscape, systems often converge towards local minima rather than global ones. In this Letter, we analyze the conditions for which annealing is approximately successful in finite time. We connect annealing to stochastic thermodynamics to derive a general bound on the distance between the system state at the end of the annealing and the ground state of the landscape. This distance depends on the amount of state updates of the system and the accumulation of nonequilibrium energy, two protocol and energy landscape-dependent quantities which we show are in a trade-off relation. We describe how to bound the two quantities both analytically and physically. This offers a general approach to assess the performance of annealing from accessible parameters, both for simulated and physical implementations.

4.
Phys Rev E ; 108(5-1): 054119, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115542

RESUMO

Annealing is the process of gradually lowering the temperature of a system to guide it towards its lowest energy states. In an accompanying paper [Y. Luo et al., Phys. Rev. E 108, L052105 (2023)10.1103/PhysRevE.108.L052105], we derived a general bound on annealing performance by connecting annealing with stochastic thermodynamics tools, including a speed limit on state transformation from entropy production. We here describe the derivation of the general bound in detail. In addition, we analyze the case of simulated annealing with Glauber dynamics in depth. We show how to bound the two case-specific quantities appearing in the bound, namely the activity, a measure of the number of microstate jumps, and the change in relative entropy between the state and the instantaneous thermal state, which is due to temperature variation. We exemplify the arguments by numerical simulations on the Sherrington-Kirkpatrick (SK) model of spin glasses.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37903405

RESUMO

The rational design and preparation of conductive metal-organic frameworks (MOFs) are alluring and challenging pathways to develop active catalysts toward electrocatalytic glucose oxidation. The hybridization of conductive MOFs with carbon nanotubes (CNTs) in the form of a composite can greatly improve the electrocatalytic performance. Herein, a facile one-step synthetic strategy is utilized to fabricate a Ni3(HHTP)2/CNT (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) composite for nonenzymatic detection of glucose in an alkaline solution. The Ni3(HHTP)2/CNT composite, as an electrochemical glucose sensor material, exhibits superior electrocatalytic activity toward glucose oxidation with a wide detection range of up to 3.9 mM, a low detection limit of 4.1 µM (signal/noise = 3), a fast amperometric response time of <2 s, and a high sensitivity of 4774 µA mM-1 cm-2, surpassing the performance of some recently reported nonenzymatic transition-metal-based glucose sensors. In addition, the composite sensor also shows outstanding selectivity, robust long-term electrochemical stability, favorable anti-interference properties, and good reproducibility. This work displays the effectiveness of enhancing the electrocatalytic performance toward glucose detection by combing conductive MOFs with CNTs, thereby opening up an applicable and encouraging approach for the design of advanced nonenzymatic glucose sensors.

6.
Blood Adv ; 7(1): 32-39, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36260735

RESUMO

Relapsed/refractory primary central nervous system lymphoma (PCNSL) and secondary central nervous system lymphoma (SCNSL) are associated with short survival and represent an unmet need, requiring novel effective strategies. Anti-CD19 chimeric antigen receptor (CAR) T cells, effective in systemic large B-cell lymphoma (LBCL), have shown responses in PCNSL and SCNSL in early reports, but with limited sample size. We, therefore, performed a comprehensive systematic review and meta-analysis of all published data describing CAR T-cell use in PCNSL and SCNSL. This identified 128 patients with PCNSL (30) and SCNSL (98). Our primary objectives were to evaluate CAR T-cell specific toxicity (immune effector cell-associated neurotoxicity syndrome [ICANS] and cytokine release syndrome [CRS]) as well as response rates in these 2 populations. Seventy percent of patients with PCNSL had CRS of any grade (13% grade 3-4) and 53% had ICANS of any grade (18% grade 3-4). Comparatively, 72% of the SCNSL cohort experienced CRS of any grade (11% grade 3-4) and 48% had ICANS of any grade (26% grade 3-4). Of the patients with PCNSL, 56% achieved a complete remission (CR) with 37% remaining in remission at 6 months. Similarly, 47% of patients with SCNSL had a CR, with 37% in remission at 6 months. In a large meta-analysis of central nervous system (CNS) lymphomas, toxicity of anti-CD19-CAR T-cell therapy was similar to that of registrational studies in systemic LBCL with no increased signal of neurotoxicity observed. Encouraging efficacy was demonstrated in patients with CNS lymphoma with no discernible differences between PCNSL and SCNSL.


Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Segunda Neoplasia Primária , Síndromes Neurotóxicas , Humanos , Antígenos CD19 , Neoplasias do Sistema Nervoso Central/terapia , Neoplasias do Sistema Nervoso Central/patologia , Síndrome da Liberação de Citocina , Imunoterapia Adotiva/efeitos adversos , Linfoma Difuso de Grandes Células B/patologia
7.
Genet Epidemiol ; 46(8): 615-628, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35788983

RESUMO

To understand phenotypic variations and key factors which affect disease susceptibility of complex traits, it is important to decipher cell-type tissue compositions. To study cellular compositions of bulk tissue samples, one can evaluate cellular abundances and cell-type-specific gene expression patterns from the tissue transcriptome profiles. We develop both fixed and mixed models to reconstruct cellular expression fractions for bulk-profiled samples by using reference single-cell (sc) RNA-sequencing (RNA-seq) reference data. In benchmark evaluations of estimating cellular expression fractions, the mixed-effect models provide similar results as an elegant machine learning algorithm named cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORTx), which is a well-known and reliable procedure to reconstruct cell-type abundances and cell-type-specific gene expression profiles. In real data analysis, the mixed-effect models outperform or perform similarly as CIBERSORTx. The mixed models perform better than the fixed models in both benchmark evaluations and data analysis. In simulation studies, we show that if the heterogeneity exists in scRNA-seq data, it is better to use mixed models with heterogeneous mean and variance-covariance. As a byproduct, the mixed models provide fractions of covariance between subject-specific gene expression and cell types to measure their correlations. The proposed mixed models provide a complementary tool to dissect bulk tissues using scRNA-seq data.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos , Modelos Genéticos , Transcriptoma , RNA
8.
Genet Epidemiol ; 46(5-6): 234-255, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35438198

RESUMO

In this paper, we develop functional ordinal logistic regression (FOLR) models to perform gene-based analysis of ordinal traits. In the proposed FOLR models, genetic variant data are viewed as stochastic functions of physical positions and the genetic effects are treated as a function of physical positions. The FOLR models are built upon functional data analysis which can be revised to analyze the ordinal traits and high dimension genetic data. The proposed methods are capable of dealing with dense genotype data which is usually encountered in analyzing the next-generation sequencing data. The methods are flexible and can analyze three types of genetic data: (1) rare variants only, (2) common variants only, and (3) a combination of rare and common variants. Simulation studies show that the likelihood ratio test statistics of the FOLR models control type I errors well and have good power performance. The proposed methods achieve the goals of analyzing ordinal traits directly, reducing high dimensionality of dense genetic variants, being computationally manageable, facilitating model convergence, properly controlling type I errors, and maintaining high power levels. The FOLR models are applied to analyze Age-Related Eye Disease Study data, in which two genes are found to strongly associate with four ordinal traits.


Assuntos
Testes Genéticos , Modelos Genéticos , Simulação por Computador , Variação Genética , Genótipo , Humanos , Modelos Logísticos , Fenótipo
9.
Artigo em Inglês | MEDLINE | ID: mdl-37015689

RESUMO

To our knowledge, it has been widely studied in Screen-2D modality for the six basic emotions proposed by Professor Paul Ekman, but there are only studies on their positive and negative valence in VR-3D modality. In this study, we will investigate whether the six basic emotions have stronger brain activation states in VR-3D modality than in Screen-2D modality. We designed an emotion-inducing experiment with six basic emotions (happiness, surprise, sadness, fear, anger, and disgust) to record the electroencephalogram (EEG) signals during watching VR-3D and Screen-2D videos. The power spectral density (PSD) was calculated to compare the brain activation differences between VR-3D and Screen-2D modalities during the induction of the six basic emotions. The results of statistical analysis of the relative power differences between VR-3D and Screen-2D modalities for each emotion revealed that both happiness and surprise presented greater differences in the α and γ frequency bands, while sad, fear, disgust and anger all presented greater differences in the α and θ frequency bands, which are mainly observed in the frontal and occipital regions. On the other hand, the six emotions all yielded satisfactory classification accuracy (above 85%) by classification from a subset of power feature of the brain activation states in the same emotion between the two modalities. Overall, there are significant differences in the induction of same discrete emotions in VR-3D and Screen-2D modalities, with greater brain activation in VR-3D modalities. These findings provide a better understanding about the neural activity of discrete emotional tasks assessed in VR environments.

10.
Nanoscale ; 13(44): 18763-18772, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34747966

RESUMO

Finding an efficient, stable and cheap oxygen evolution reaction (OER) catalyst is very important for renewable energy conversion systems. There are relatively few related research reports due to the thermodynamic instability of transition metal sulfides (TMSs) at the oxidation potential and these are usually focused on single metal sulfides or bimetal sulfides. Metal sulfide mixture systems are rarely studied. The fabrication of a TMS/TMS interface is a feasible method to improve the kinetics of the OER. Here, we constructed TMS hybrid electrocatalysts with multiple phase interfaces for the oxygen evolution reaction, named S-CoFe/CNTs. The results show that the S-CoFe/CNT catalyst exhibits a low overpotential of 258 mV to achieve a current density of 10 mA cm-2, and has high activity in the OER process. Meanwhile, the catalyst also shows a low Tafel slope (69 mV dec-1) and good stability. This can be attributed to the synergistic catalysis of the multiphase interface in the catalyst and the rapid electron transfer pathway brought by CNTs. The new strategy for the synthesis of catalysts containing the TMS/TMS interface provides a new idea and method for the development of efficient and practical water splitting catalysts.

11.
Insects ; 12(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34442265

RESUMO

The Chinese oak silkworm is commonly used in pupal diapause research. In this study, a long photoperiod was used to trigger pupal diapause termination. Genes encoding three hormones, namely prothoracicotropic hormone (PTTH), ecdysis triggering hormone (ETH), and eclosion hormone (EH), were studied. Additionally, ecdysteroids (mainly 20-hydroxyecdysone, 20E) were quantified by HPLC. Pupal diapause stage was determined by measuring respiratory intensity. The pupae enter a low metabolic rate, which starts approximately 1 month after pupal emergence. ApPTTH expression showed a small increase at 14 days and then a larger increase from 35 days under the long photoperiod treatment. A similar pattern was observed for the titer of 20E in the hemolymph. However, ApETH expression later increased under the long photoperiod treatment (42 days) just before eclosion. Moreover, ApEH expression increased from 21 to 35 days, and then decreased before ecdysis. These results suggest that hormone-related gene expression is closely related to pupal development. Our study lays a foundation for future diapause studies in A. pernyi.

12.
Mol Immunol ; 126: 65-72, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32768860

RESUMO

The insect gut participates in initial local immune responses by producing reactive oxygen and nitrogen species as well as anti-microbial peptides to resist pathogenic invasions. Nitric oxide (NO), a signaling and an immune effector molecule synthesized by the enzyme NO synthase (NOS), mediates an early step of the signal transduction pathway. In this study, we evaluated NO levels after Nosema pernyi infection in Antheraea pernyi gut. NOS activity was higher in the microsporidia-infected gut of A. pernyi than in that of control. Three NOS-related genes were cloned, and their spatio-temporal expression patterns were evaluated. ApNOS2 was expressed quickly in the midgut after N. pernyi infection. Sodium nitroprusside, dihydrate (SNP), or Nω-L-nitro-arginine methyl ester, hydrochloride (L-NAME), altered the NO content in A. pernyi midgut. Anti-microbial peptides (AMPs) in the groups exposed to N. pernyi plus SNP and N. pernyi plus L-NAME exhibited higher and lower expression, respectively, relative to the control. These results indicate that microsporidia infection triggers short-term activation of NO and NOS genes in the A. pernyi gut that is downregulated after 24 h. Notably, infection rates can be influenced by a NOS inhibitor. Furthermore, NO can be induced by pathogens. Similarly, NO content in the A. pernyi gut also influences AMPs in humoral immunity and some immune-related genes. Our results suggest that nitric oxide plays a vital role in A. pernyi gut immunity.


Assuntos
Trato Gastrointestinal/imunologia , Microsporidiose/veterinária , Mariposas/imunologia , Óxido Nítrico/metabolismo , Nosema/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Artrópodes/antagonistas & inibidores , Proteínas de Artrópodes/metabolismo , Regulação para Baixo , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Imunidade Humoral/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Microsporidiose/imunologia , Mariposas/enzimologia , Mariposas/microbiologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Análise Espaço-Temporal
13.
J Colloid Interface Sci ; 578: 668-676, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32559482

RESUMO

Bornite (Cu5FeS4) exhibits great potential for the alkaline hydrogen evolution reaction (HER) and few studies have been conducted on its electrocatalytic activity. Herein, we successfully fabricate NixS/Cu5FeS4 hybrid catalyst with interface structure between NixS nanoparticles (NPs) and Cu5FeS4 NPs. The NixS/Cu5FeS4 hybrid catalyst exhibits favorable HER performances in 1.0 M KOH electrolyte and demonstrates smaller overpotential and lower Tafel slope than bare NixS NPs and Cu5FeS4 NPs. The remarkable HER performances are attributed to the strongly coupling interface structure between NixS NPs and Cu5FeS4 NPs, which leads to synergistic effect optimizing the HER activity and enhancing the charge transfer during catalytic process. This work provides a promising strategy for the construction of Cu5FeS4-based hybrid catalyst and its application in energy systems.

14.
J Colloid Interface Sci ; 574: 241-250, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32330750

RESUMO

The adverse effects caused by global climate warming continue to be a great impetus to develop electrocatalytic water splitting technology for hydrogen source production. However, there is an urgent necessity but it is still a significant challenge to explore electrocatalysts with excellent performance, low cost, and environmental benignity for expediting the oxygen evolution reaction (OER) owing to the sluggish reaction kinetics. Fe-based materials, especially FeOOH, have great potential as OER electrocatalysts but suffers from poor electrical conductivity. Herein, we rationally designed and successfully synthesized FeOOH nanosheet arrays supported on alkali-treated nickel foam (FeOOH NSAs/ATNF) and applied it as an electrocatalyst toward OER. The FeOOH NSAs/ATNF catalyst exhibited outstanding performance with small overpotential, fast kinetics and superior stability in alkaline medium. Our research opens up a facile and effective approach to develop cost-effective and high-performance electrocatalysts for energy conversion, especially for these Fe-based materials with poor electrical conductivity.

15.
ChemSusChem ; 12(19): 4442-4451, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31274234

RESUMO

The quest for developing electrochemical energy-storage and -conversion technologies continues to be a great impetus to develop cost-effective, highly active, and electrochemically stable electrocatalysts for overcoming the activation energy barriers of the oxygen evolution reaction (OER). Co3 O4 nanocrystals have great potential as OER catalysts, and research efforts on improving the catalytic activity of Co3 O4 are currently underway in many laboratories. Herein, CoFe layered double hydroxide (LDH) nanosheets were directly grown on the active Co3 O4 substrate to form nanohybrid electrocatalysts for OER. The CoFe LDH/Co3 O4 (6:4) nanohybrid exhibited superior catalytic performance with a low overpotential and a small Tafel slope in alkaline solution. The outstanding performance of the CoFe LDH/Co3 O4 (6:4) nanohybrid was primarily owing to the synergistic effects induced by the strongly coupled interface between CoFe LDH and Co3 O4 ; this feature enhanced the intrinsic OER catalytic activity of the nanohybrid and favored fast charge transfer. Compared with other Co3 O4 -based catalysts, the nanohybrid shows advantages and offers a feasible avenue for improving the activity of Co3 O4 -based catalysts.

16.
ChemSusChem ; 12(12): 2679-2688, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30946532

RESUMO

The development and design of a highly active and affordable nanostructured material as an efficient electrocatalyst for electrochemical oxygen evolution is a pressing necessity to realize industrial production of hydrogen by water electrolysis. Amorphous nanocomposites have recently attracted interest owing to their superior electrocatalytic activity derived from their unique structure. Herein, amorphous CoFe double hydroxides (Am-CFDH) decorated with N-doped carbon nanotubes (NCNTs) is synthesized by a facile and simple one-pot approach under room temperature. Through electrochemical measurement, the bare Am-CFDH nanocomposite already exhibits a comparable oxygen evolution reaction (OER) activity to the commercial IrO2 catalyst on account of its amorphous nature and the interaction between Co and Fe. The introduced NCNTs can provide better electrical conductivity, more anchoring sites, and functional groups for enhancing the transfer of electrons and reactants, preventing the agglomeration of Am-CFDH to expose more active sites, and improving the synergistic effect between Am-CFDH and NCNTs. Thus, the Am-CFDH/NCNTs hybrid displays favorable durability beyond 20 h and advanced OER activity, owning a small overpotential of 270 mV at 10 mA cm-2 and a low Tafel slope of 56.88 mV dec-1 in alkaline medium.

17.
Nanoscale ; 11(5): 2355-2365, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30663754

RESUMO

Nowadays, disorder engineering of catalytic materials has attracted significant attention because it can increase catalytic active sites and thus enhance their catalytic activity for electrocatalytic reactions. However, it is extremely important to uncover the relationship between disorder engineering and catalytic activity. Particularly, deep exploration of the relationship is very important for fabricating excellent highly active catalysts for oxygen evolution reaction (OER), which is one of the promising technologies in energy transition. In this study, we prepared Fe-doped Ni3S2 materials and simultaneously controlled the disorder degree by regulating the ion concentration to improve the activity for OER. By investigating the as-prepared catalysts with various disorder degrees for OER, we also explored the relationship between the disordered structure and OER catalytic performance. In particular, the optimized electrocatalyst with an appropriate disorder degree showed excellent activity and stability. We hope that this study provides a feasible direction to fabricate and optimize transition metal chalcogenide (TMC) electrocatalysts as efficient and stable electrocatalysts for OER.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA