Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39272401

RESUMO

Diarrhea serves as a vital health indicator for assessing wildlife populations post-reintroduction. Upon release into the wild, wild animals undergo adaptation to diverse habitats and dietary patterns. While such changes prompt adaptive responses in the fecal microbiota, they also render these animals susceptible to gastrointestinal diseases, particularly diarrhea. This study investigates variations in fecal microorganisms and hormone levels between diarrhea-afflicted and healthy Przewalski's horses. The results demonstrate a significant reduction in the alpha diversity of the fecal bacterial community among diarrheal Przewalski's horses, accompanied by notable alterations in taxonomic composition. Firmicutes, Proteobacteria, and Bacteroidetes emerge as dominant phyla across all fecal samples, irrespective of health status. However, discernible differences in fecal bacterial abundance are observed between healthy and diarrhea-stricken individuals at the genus level, specifically, a diminished relative abundance of Pseudobutyrivibrio is observed. The majority of the bacteria that facilitate the synthesis of short-chain fatty acids, Christensenellaceae_R_7_group (Christensenellaceae), NK4A214_group (Ruminococcus), Lachnospiraceae_XPB1014_group (Lachnospiraceae), [Eubacterium]_coprostanoligenes_group (Eubacterium), Rikenellaceae_RC9_gut_group, Lachnospiraceae_AC2044_group (Lachnospiraceae), and Prevotellaceae_UcG_001 (Prevotella) are noted in diarrhea-affected Przewalski's horses, while Erysipelotrichaceae, Phoenicibacter, Candidatus_Saccharimonas (Salmonella), and Mogibacterium are present in significantly increased amounts. Moreover, levels of immunoglobulin IgA and cortisol are significantly elevated in the diarrhea group compared with the non-diarrhea group. Overall, this study underscores substantial shifts in fecal bacterial diversity, abundance, and hormone levels in Przewalski's horses during episodes of diarrhea.

2.
Animals (Basel) ; 14(16)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39199922

RESUMO

This study aims to investigate the dynamic changes in daily step counts under different housing systems and further explore the effects of housing system on the body conformation, carcass traits, meat quality, and serum biochemical parameters of a Chinese indigenous chicken breed. At 60 d of age, 300 Jiuyuan Black male chickens with similar body weights in each housing system were further raised until the age of 150 d. At 90, 120, and 150 d of age, in both cage-reared and free-range systems, the top 20 chickens with the highest step counts measured using pedometers and the bottom 20 chickens with the lowest step counts were designated as the cage high-steps group (CHS), the cage low-steps group (CLS), the free-range high-steps group (FHS), and the free-range low-steps group (FLS), respectively. The results show that, at any age stage, the average daily steps (ADS) and total steps (TS) of the FHS group are significantly higher than the other three groups (p < 0.05). The TS of almost all groups showed an overall downward trend as the age increased. Increased exercise volume results in reduced shank length (90 d), breast width (90 d), and keel length (150 d) (p < 0.05). Only birds at 90 d of age from the FHS and FLS groups exhibited lower live body weight, carcass weight, half-eviscerated weight, eviscerated weight, breast muscle weight, leg muscle weight, and percentage of eviscerated weight than the CLS group (p < 0.05). Birds from the FHS group showed the highest heart weight values but the lowest abdominal fat weight values among these four groups (p < 0.05). Both the breast and leg muscle samples from the FHS group displayed higher dry matter and shear force than those from the CHS and CLS groups (p < 0.05). The FHS group displayed the lowest intramuscular fat among the four groups (p < 0.05). The creatine kinase (CK) and lactate dehydrogenase (LDH) levels in chickens of all age stages were almost observed to rise with increased physical activity. In conclusion, free-range chickens with more exercise volume exhibited an elevated heart weight and reduced abdominal fat but showed negative effects on some body measurements and carcass traits. These results can provide a theoretical basis for the selection of different housing systems for Chinese indigenous chickens.

3.
Theriogenology ; 229: 100-107, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39167834

RESUMO

The degenerative process of follicular atresia in hens naturally commences in granulosa cells, significantly impacting laying hens' reproductive performance. Past studies suggested that granulosa cell autophagy and apoptosis work together to cause follicular atresia. Recent research indicates that miRNA regulates granulosa autophagy and apoptosis, which contributes to the development of follicular atresia. However, the role of miR-302c-3p in follicular atresia and development remains unclear. In this study with the RNA-seq approach, we found that miR-302c-3p expression was significantly decreased in atrophic follicles, suggesting its involvement in the follicular atresia process. Following this, we performed in vitro studies to confirm that miR-302c-3p inhibits autophagy and apoptosis in chicken granulosa cells. Mechanistically, LATS2 is considered as the putative target gene of miR-302c-3p, and it has been demonstrated that LATS2 exerts a positive regulatory role in the modulation of autophagy and apoptosis in chicken granulosa cells. Furthermore, we verified the regulatory function of miR-302c-3p in chicken granulosa cells via the LATS2-YAP signaling pathway. Our results collectively demonstrates that miR-302c-3p targets LATS2 to modulate the YAP signaling pathway, impacting autophagy and apoptosis in granulosa cells leading to follicular atresia.


Assuntos
Apoptose , Autofagia , Galinhas , Células da Granulosa , MicroRNAs , Animais , Feminino , Células da Granulosa/fisiologia , Células da Granulosa/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Galinhas/genética , Transdução de Sinais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Regulação da Expressão Gênica , Proteínas de Sinalização YAP/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Atresia Folicular/genética , Atresia Folicular/fisiologia
4.
Animals (Basel) ; 14(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123731

RESUMO

Wild ungulates play crucial roles in maintaining the structure and function of local ecosystems. The alpine musk deer (Moschus chrysogaste), white-lipped deer (Przewalskium albirostris), and red serow (Capricornis rubidus) are widely distributed throughout the Nyenchen Tanglha Mountains of Tibet. However, research on the mechanisms underlying their coexistence in the same habitat remains lacking. This study aimed to investigate the mechanisms underlying the coexistence of these species based on their dietary preferences through DNA barcoding using the fecal samples of these animals collected from the study area. These species consume a wide variety of food types. Alpine musk deer, white-lipped deer, and red serow consume plants belonging to 74 families and 114 genera, 62 families and 122 genera, and 63 families and 113 genera, respectively. Furthermore, significant differences were observed in the nutritional ecological niche among these species, primarily manifested in the differentiation of food types and selection of food at the genus level. Owing to differences in social behavior, body size, and habitat selection, these three species further expand their differentiation in resource selection, thereby making more efficient use of environmental resources. Our findings indicate these factors are the primary reasons for the stable coexistence of these species.

5.
Polymers (Basel) ; 16(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125170

RESUMO

The indigo dye found in wastewater from printing and dyeing processes is potentially carcinogenic, teratogenic, and mutagenic, making it a serious threat to the health of animals, plants, and humans. Motivated by the growing need to remove indigo from wastewater, this study prepared novel fiber absorbents using melt-blow polypropylene (PP) melt as a matrix, as well as acrylic acid (AA) and maleic anhydride (MAH) as functional monomers. The modification conditions were studied to optimize the double-initiation, continuous-suspension grafting process, and then functional fibers were prepared by melt-blown spinning the modified PP. The results showed that the optimum modification conditions were as follows: a 3.5 wt% interfacial agent, 8 mg/L of dispersant, 80% monomer content, a 0.8 mass ratio of AA to MAH, a 1000 r/min stir speed, 3.5 wt% initiator DBPH grafting at 130 °C for 3 h, and 1 wt% initiator BPO grafting at 90 °C for 2 h. The highest grafting rate of the PP-g-AA-MAH was 31.2%, and the infrared spectrum and nuclear magnetic resonance spectroscopic analysis showed that AA and MAH were successfully grafted onto PP fiber. This modification strategy also made the fibers more hydrophilic. The adsorption capacity of the PP-g-AA-MAH fibers was highly dependent on pH, and the highest indigo adsorption capacity was 110.43 mg/g at pH 7. The fiber adsorption capacity for indigo increased rapidly before plateauing with increasing time or indigo concentration, and the experimental data were well described in a pseudo-second-order kinetic model and a Langmuir isothermal adsorption model. Most impressively, the modified fiber adsorption capacity for indigo remained as high as 91.22 mg/g after eight regeneration and reuse cycles. In summary, the PP-g-AA-MAH fibers, with excellent adsorption-desorption characteristics, could be readily regenerated and reused, and they are a promising material for the removal of indigo from wastewater.

6.
Biomed Pharmacother ; 178: 117209, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39094544

RESUMO

A1 polarization of astrocytes mediated prolonged inflammation contributing to brain injury in ischemic stroke. We have previously shown that AD16 protects against neonatal hypoxic-ischemic brain damage in vivo and oxygen-glucose deprivation in vitro. More recently, AD16 has demonstrated safety, tolerability, and favorable pharmacokinetics in a randomized controlled phase I trial. In this study, we utilized a rat model of transient middle cerebral artery occlusion (tMCAO) to explore whether the anti-inflammatory compound AD16 protects against ischemic brain injury by regulating A1 polarization and its underlying mechanisms. Our results showed that AD16 treatment significantly reduced the brain infarcted volume and improved neurological function in tMCAO rats. GO analysis results show that differential genes among the Sham, tMCAO and AD16 treatment groups are involved in the regulation of cytokine and inflammatory response. KEGG enrichment pathways analysis mainly enriched in cytokine-cytokine receptor interaction, viral protein interaction with cytokine-cytokine receptor, TNF, chemokine, NF-κB and IL-17 signaling pathway. Furthermore, AD16 treatment decreased the permeability of the blood-brain barrier and suppressed neuroinflammation. AD16 treatment also significantly reduced the polarization of A1 and inhibited NF-κB and JAK2/STAT3 signaling pathways. This study demonstrates that AD16 protects against brain injury in ischemic stroke by reducing A1 polarization to suppress neuroinflammation through downregulating NF-κB and JAK2/STAT3 signaling. Our findings uncover a potential molecular mechanism for AD16 and suggest that AD16 holds promising therapeutic potential against cerebral ischemia.


Assuntos
Astrócitos , Doenças Neuroinflamatórias , Animais , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Polaridade Celular/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
7.
Polymers (Basel) ; 16(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891407

RESUMO

In this study, the plasma graft polymerization technique was used to graft glycidyl methacrylate (GMA) onto polypropylene (PP) melt-blown fibers, which were subsequently aminated with N-methyl-D-glucamine (NMDG) by a ring-opening reaction, resulting in the formation of a boron adsorbent denoted as PP-g-GMA-NMDG. The optimal conditions for GMA concentration, grafting time, grafting temperature, and the quantity of NMDG were determined using both single factor testing and orthogonal testing. These experiments determined the optimal process conditions to achieve a high boron adsorption capacity of PP-g-GMA-NMDG. Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersion spectrum analysis (EDS), and water contact angle measurements were performed to characterize the prepared adsorbent. Boron adsorption experiments were carried out to investigate the effects of pH, time, temperature, and boron concentration on the boron adsorption capacity of PP-g-GMA-NMDG. The adsorption isotherms and kinetics of PP-g-GMA-NMDG for boron were also studied. The results demonstrated that the adsorption process followed a pseudo-second-order kinetic model and a Langmuir isothermal model. At a pH of 6, the maximum saturation adsorption capacity of PP-g-GMA-NMDG for boron was 18.03 ± 1 mg/g. In addition, PP-g-GMA-NMDG also showed excellent selectivity for the adsorption of boron in the presence of other cations, such as Na+, Mg2+, and Ca2+, PP-g-GMA-NMDG, and exhibited excellent selectivity towards boron adsorption. These results indicated that the technique of preparing PP-g-GMA-NMDG is both viable and environmentally benign. The PP-g-GMA-NMDG that was made has better qualities than other similar adsorbents. It has a high adsorption capacity, great selectivity, reliable repeatability, and easy recovery. These advantages indicated that the adsorbents have significant potential for widespread application in the separation of boron in water.

8.
Animals (Basel) ; 14(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731340

RESUMO

Heterosis refers to the phenomenon where hybrids exhibit superior performance compared to the parental phenotypes and has been widely utilized in crossbreeding programs for animals and crops, yet the molecular mechanisms underlying this phenomenon remain enigmatic. A better understanding of the gene expression patterns in post-hatch chickens is very important for exploring the genetic basis underlying economically important traits in the crossbreeding of chickens. In this study, breast muscle and liver tissues (n = 36) from full-sib F1 birds and their parental pure lines were selected to identify gene expression patterns and differentially expressed genes (DEGs) at 28 days of age by strand-specific RNA sequencing (ssRNA-seq). This study indicates that additivity is the predominant gene expression pattern in the F1 chicken post-hatch breast muscle (80.6% genes with additivity) and liver (94.2% genes with additivity). In breast muscle, Gene Ontology (GO) enrichment analysis revealed that a total of 11 biological process (BP) terms closely associated with growth and development were annotated in the identified DEG sets and non-additive gene sets, including STAT5A, TGFB2, FGF1, IGF2, DMA, FGF16, FGF12, STAC3, GSK3A, and GRB2. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation presented that a total of six growth- and development-related pathways were identified, involving key genes such as SLC27A4, GLUL, TGFB2, COX17, and GSK3A, including the PPAR signaling pathway, TGF-beta signaling pathway, and mTOR signaling pathway. Our results may provide a theoretical basis for crossbreeding in domestic animals.

9.
Polymers (Basel) ; 16(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794557

RESUMO

This research focuses on modifying discarded feathers by grafting glycidyl methacrylate (GMA) onto their surface through thiolation, followed by an epoxy ring-opening reaction with N-methyl-D-glucamine (NMDG) to synthesize feather-based boron adsorbents. Optimization of the adsorbent preparation conditions was achieved through single-factor experiments, varying temperature, time, GMA concentration, and initiator dosage. The synthesized adsorbent (F-g-GMA-NMDG) underwent characterization using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The adsorption behavior of the adsorbent was studied, and its boron adsorption capacity at different temperatures was determined through static adsorption kinetic curves. Analysis of adsorption isotherms, kinetics, and thermodynamics was conducted. Results indicate that the boron adsorption process by F-g-GMA-NMDG follows a pseudo-second-order model. The adsorption process is endothermic, with higher temperatures promoting adsorption efficiency. Gibbs free energy (ΔG) confirms the spontaneity of the adsorption process. Enhanced adsorption efficacy was observed under neutral and acidic pH conditions. After four cycles, the adsorbent maintained its adsorption efficiency, demonstrating its stability and potential for reuse. This study provides novel insights into both the treatment of discarded feathers and the development of boron adsorbents.

10.
World J Gastrointest Oncol ; 16(3): 979-990, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38577474

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) is the primary risk factor for gastric cancer (GC), the Wnt/ß-Catenin signaling pathway is closely linked to tumourigenesis. GC has a high mortality rate and treatment cost, and there are no drugs to prevent the progression of gastric precancerous lesions to GC. Therefore, it is necessary to find a novel drug that is inexpensive and preventive to against GC. AIM: To explore the effects of H. pylori and Moluodan on the Wnt/ß-Catenin signaling pathway and precancerous lesions of GC (PLGC). METHODS: Mice were divided into the control, N-methyl-N-nitrosourea (MNU), H. pylori + MNU, and Moluodan groups. We first created an H. pylori infection model in the H. pylori + MNU and Moluodan groups. A PLGC model was created in the remaining three groups except for the control group. Moluodan was fed to mice in the Moloudan group ad libitum. The general condition of mice were observed during the whole experiment period. Gastric tissues of mice were grossly and microscopically examined. Through quantitative real-time PCR (qRT-PCR) and Western blotting analysis, the expression of relevant genes were detected. RESULTS: Mice in the H. pylori + MNU group showed the worst performance in general condition, gastric tissue visual and microscopic observation, followed by the MNU group, Moluodan group and the control group. QRT-PCR and Western blotting analysis were used to detect the expression of relevant genes, the results showed that the H. pylori + MNU group had the highest expression, followed by the MNU group, Moluodan group and the control group. CONCLUSION: H. pylori can activate the Wnt/ß-catenin signaling pathway, thereby facilitating the development and progression of PLGC. Moluodan suppressed the activation of the Wnt/ß-catenin signaling pathway, thereby decreasing the progression of PLGC.

11.
Cell Calcium ; 120: 102886, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631163

RESUMO

Neurodevelopment, a complex and highly regulated process, plays a foundational role in shaping the structure and function of the nervous system. The transient receptor potential melastatin 7 (TRPM7), a divalent cation channel with an α-kinase domain, mediates a wide range of cellular functions, including proliferation, migration, cell adhesion, and survival, all of which are essential processes in neurodevelopment. The global knockout of either TRPM7 or TRPM7-kinase is embryonically lethal, highlighting the crucial role of TRPM7 in development in vivo. Subsequent research further revealed that TRPM7 is indeed involved in various key processes throughout neurodevelopment, from maintaining pluripotency during embryogenesis to regulating gastrulation, neural tube closure, axonal outgrowth, synaptic density, and learning and memory. Moreover, a discrepancy in TRPM7 expression and/or function has been associated with neuropathological conditions, including ischemic stroke, Alzheimer's disease, and Parkinson's disease. Understanding the mechanisms of proper neurodevelopment may provide us with the knowledge required to develop therapeutic interventions that can overcome the challenges of regeneration in CNS injuries and neurodegenerative diseases. Considering that ion channels are the third-largest class targeted for drug development, TRPM7's dual roles in development and degeneration emphasize its therapeutic potential. This review provides a comprehensive overview of the current literature on TRPM7 in various aspects of neurodevelopment. It also discusses the links between neurodevelopment and neurodegeneration, and highlights TRPM7 as a potential therapeutic target for neurodegenerative disorders, with a focus on repair and regeneration.


Assuntos
Doenças Neurodegenerativas , Canais de Cátion TRPM , Humanos , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Animais , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurogênese , Proteínas Serina-Treonina Quinases/metabolismo
12.
J Food Sci ; 89(1): 81-95, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983847

RESUMO

Shaking and tumbling are extremely important for the formation of the special flavor of Wuyi rock tea. In this study, we analyzed the effects of different shaking and tumbling degrees on the quality index content of tea leaves and determined changes in gene expression in tea leaves using RNA sequencing technology. On this basis, the correlation between gene expression intensities in tea leaves and tea quality index content was analyzed. The results showed that heavy shaking and tumbling (MW3) increased gene expression of metabolic pathways, biosynthesis of secondary metabolites, starch and sucrose metabolism, biosynthesis of amino acids, glycine, serine, and threonine metabolism, alpha-linolenic acid metabolism pathways and decreased gene expression of flavonoid biosynthesis, carbon fixation in photosynthetic organisms, phenylpropanoid biosynthesis, and plant hormone signal transduction pathways in tea leaves, which in turn increased the content of caffeine, soluble sugar, amino acid and decreased the content of flavone, tea polyphenol, catechin component in tea leaves; the opposite was true for light shaking and tumbling. Second, this study found that MW3 was more beneficial in improving the mellowness, sweetness, and fresh and brisk taste of tea leaves and reducing the bitterness of tea leaves. This study provides some references to guide the processing of Wuyi rock tea with different flavors. PRACTICAL APPLICATION: Heavy shaking and tumbling was more beneficial in improving the mellowness, sweetness, and fresh and brisk taste of tea leaves and reducing the bitterness of tea leaves. Therefore, the degree of shaking and tumbling in Wuyi production can be appropriately improved to produce high-quality tea and improve the economic benefits of tea.


Assuntos
Camellia sinensis , Chá , Chá/química , Camellia sinensis/química , Cafeína/análise , Perfilação da Expressão Gênica , Polifenóis/análise , Folhas de Planta/química
13.
J Agric Food Chem ; 71(49): 19682-19693, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37988651

RESUMO

Tea (Camellia sinensis) flowers emit a large amount of volatiles that attract pollinators. However, few studies have characterized temporal and spatial variation in tea floral volatiles. To investigate the distribution of volatiles within tea flowers and their variation among opening stages, volatile components from different parts of tea flowers and different opening stages were collected by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry. A total of 51 volatile compounds of eight chemical classes were identified in the tea flowers. Volatile compounds were most abundant in tea flowers of the Shuchazao cultivar. Acetophenone, 1-phenylethanol, 2-phenylethanol, and benzyl alcohol were the most abundant volatiles. Terpenes were common in the sepals, and benzoids were common in the stamens. The fatty acid derivatives were mainly distributed in the pistils and receptacles and were less abundant in the petals, sepals, and stamens. During the opening phase of tea flowers, the volatile content increased 12-fold, which mainly stemmed from the increase in benzoids. These results enhance our understanding of the formation of volatiles in tea flowers.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Camellia sinensis/química , Flores/química , Terpenos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida , Chá/química , Compostos Orgânicos Voláteis/química
14.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686305

RESUMO

Transcription factors (TFs) have been shown to play a key role in the occurrence and development of tumors, including triple-negative breast cancer (TNBC), with a worse prognosis. Machine learning is widely used for establishing prediction models and screening key tumor drivers. Current studies lack TF integration in TNBC, so targeted research on TF prognostic models and targeted drugs is beneficial to improve clinical translational application. The purpose of this study was to use the Least Absolute Shrinkage and Selection Operator to build a prognostic TFs model after cohort normalization based on housekeeping gene expression levels. Potential targeted drugs were then screened on the basis of molecular docking, and a multi-drug combination strategy was used for both in vivo and in vitro experimental studies. The machine learning model of TFs built by E2F8, FOXM1, and MYBL2 has broad applicability, with an AUC value of up to 0.877 at one year. As a high-risk clinical factor, its abnormal disorder may lead to upregulation of the activity of pathways related to cell proliferation. This model can also be used to predict the adverse effects of immunotherapy in patients with TNBC. Molecular docking was used to screen three drugs that target TFs: Trichostatin A (TSA), Doxorubicin (DOX), and Calcitriol. In vitro and in vivo experiments showed that TSA + DOX was able to effectively reduce DOX dosage, and TSA + DOX + Calcitriol may be able to effectively reduce the toxic side effects of DOX on the heart. In conclusion, the machine learning model based on three TFs provides new biomarkers for clinical and prognostic diagnosis of TNBC, and the combination targeted drug strategy offers a novel research perspective for TNBC treatment.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias de Mama Triplo Negativas , Humanos , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Calcitriol , Simulação de Acoplamento Molecular , Regulação da Expressão Gênica , Doxorrubicina
15.
Polymers (Basel) ; 15(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242826

RESUMO

Boron is in high demand in many sectors, yet there are significant flaws in current boron resource utilization. This study describes the synthesis of a boron adsorbent based on polypropylene (PP) melt-blown fiber using ultraviolet (UV)-induced grafting of Glycidyl methacrylate (GMA) onto PP melt-blown fiber, followed by an epoxy ring-opening reaction with N-methyl-D-glucosamine (NMDG). Using single-factor studies, grafting conditions such as the GMA concentration, benzophenone dose, and grafting duration were optimized. Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), and water contact angle were used to characterize the produced adsorbent (PP-g-GMA-NMDG). The PP-g-GMA-NMDG adsorption process was examined by fitting the data with different adsorption settings and models. The results demonstrated that the adsorption process was compatible with the pseudo-second-order model and the Langmuir model; however, the internal diffusion model suggested that the process was impacted by both extra- and intra-membrane diffusion. According to thermodynamic simulations, the adsorption process was exothermic. At pH 6, the greatest saturation adsorption capacity to boron was 41.65 mg·g-1 for PP-g-GMA-NMDG. The PP-g-GMA-NMDG preparation process is a feasible and environmentally friendly route, and the prepared PP-g-GMA-NMDG has the advantages of high adsorption capacity, outstanding selectivity, good reproducibility, and easy recovery when compared to similar adsorbents, indicating that the reported adsorbent is promising for boron separation from water.

16.
Eur J Neurosci ; 55(6): 1483-1491, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35277895

RESUMO

Glioblastoma (GBM) is the most prevalent and aggressive type of primary human brain tumours originating in the central nervous system. Despite the fact that current treatments involve surgery, chemotherapy (Temozolomide), and radiation therapy, the prognosis for patients diagnosed with GBM remains extremely poor. The standard treatment is not only unable to completely eradicate the tumour cells, but also tumour recurrence after surgical resection presents a major challenge. Furthermore, adjuvant therapies including radiation and chemotherapy have high cytotoxicity which causes extensive damage to surrounding healthy tissues and treatment is usually halted before GBM is fully eradicated. Finally, most GBM cases demonstrate temozolomide resistance, a common reason for GBM treatment failure. Therefore, there is an urgent need to develop a suitable alternative therapy that targets GBM specifically and has low cytotoxicity for healthy cells. We previously reported that transient receptor potential melastatin 7 (TRPM7) channels are aberrantly upregulated in GBM, and inhibition of TRPM7 reduced GBM cellular functions including proliferation, migration, and invasion. This suggests TRPM7 is a potential therapeutic target for GBM treatment. In this study, we investigated the effects of the TRPM7 inhibitor, carvacrol, on human GBM cell lines U87 and U251 in vivo. With the use of a flank xenograft GBM mouse model, we demonstrated that carvacrol significantly reduced the tumour size in both mice injected with U87 and U251 cells, decreased p-Akt protein level and increased p-GSK3ß protein levels. Therefore, these results suggest that carvacrol may have therapeutic potential for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Canais de Cátion TRPM , Animais , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Cimenos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Recidiva Local de Neoplasia , Proteínas Serina-Treonina Quinases , Canais de Cátion TRPM/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico
17.
Neurosci Bull ; 38(8): 857-870, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35072896

RESUMO

Neuroinflammation is a key contributor to the pathogenic cascades induced by hypoxic-ischemic (HI) insult in the neonatal brain. AD-16 is a novel anti-inflammatory compound, recently found to exert potent inhibition of the lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators. In this study, we evaluated the effect of AD-16 on primary astrocytes and neurons under oxygen-glucose deprivation (OGD) in vitro and in mice with neonatal HI brain injury in vivo. We demonstrated that AD-16 protected against OGD-induced astrocytic and neuronal cell injury. Single dose post-treatment with AD-16 (1 mg/kg) improved the neurobehavioral outcome and reduced the infarct volume with a therapeutic window of up to 6 h. Chronic administration reduced the mortality rate and preserved whole-brain morphology following neonatal HI. The in vitro and in vivo effects suggest that AD-16 offers promising therapeutic efficacy in attenuating the progression of HI brain injury and protecting against the associated mortality and morbidity.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Animais Recém-Nascidos , Astrócitos/patologia , Encéfalo/patologia , Lesões Encefálicas/patologia , Glucose , Hipóxia , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Camundongos , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oxigênio/uso terapêutico
18.
Acta Pharmacol Sin ; 43(4): 759-770, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34108651

RESUMO

Ion channels are ubiquitously expressed in almost all living cells, and are the third-largest category of drug targets, following enzymes and receptors. The transient receptor potential melastatin (TRPM) subfamily of ion channels are important to cell function and survival. Studies have shown upregulation of the TRPM family of ion channels in various brain tumours. Gliomas are the most prevalent form of primary malignant brain tumours with no effective treatment; thus, drug development is eagerly needed. TRPM2 is an essential ion channel for cell function and has important roles in oxidative stress and inflammation. In response to oxidative stress, ADP-ribose (ADPR) is produced, and in turn activates TRPM2 by binding to the NUDT9-H domain on the C-terminal. TRPM2 has been implicated in various cancers and is significantly upregulated in brain tumours. This article reviews the current understanding of TRPM2 in the context of brain tumours and overviews the effects of potential drug therapies targeting TRPM2 including hydrogen peroxide (H2O2), curcumin, docetaxel and selenium, paclitaxel and resveratrol, and botulinum toxin. It is long withstanding knowledge that gliomas are difficult to treat effectively, therefore investigating TRPM2 as a potential therapeutic target for brain tumours may be of considerable interest in the fields of ion channels and pharmacology.


Assuntos
Neoplasias Encefálicas , Canais de Cátion TRPM , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Adenosina Difosfato Ribose/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Cálcio/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Canais de Cátion TRPM/fisiologia
19.
Cell Calcium ; 96: 102400, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33784560

RESUMO

Cancer is the second leading cause of death worldwide and accounted for an estimated 9.6 million deaths, or 1 in 6 deaths, in 2018. Despite recent advances in cancer prevention, diagnosis, and treatment strategies, the burden of this disease continues to grow with each year, with dire physical, emotional, and economic consequences for all levels of society. Classic characteristics of cancer include rapid, uncontrolled cell proliferation and spread of cancerous cells to other parts of the body, a process known as metastasis. Transient receptor potential melastatin 7 (TRPM7), a Ca2+- and Mg2+-permeable nonselective divalent cation channel defined by the atypical presence of an α-kinase within its C-terminal domain, has been implicated, due to its modulation of Ca2+ and Mg2+ influx, in a wide variety of physiological and pathological processes, including cancer. TRPM7 is overexpressed in several cancer types and has been shown to variably increase cellular proliferation, migration, and invasion of tumour cells. However, the relative contribution of TRPM7 kinase domain activity to cancer as opposed to ion flux through its channel pore remains an area of active discovery. In this review, we describe the specific role of the TRPM7 kinase domain in cancer processes as well as mechanisms of regulation and inhibition of the kinase domain.


Assuntos
Neoplasias/enzimologia , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Movimento Celular/fisiologia , Ativação Enzimática/fisiologia , Humanos , Proteínas Serina-Treonina Quinases/química , Canais de Cátion TRPM/química
20.
Water Sci Technol ; 83(2): 435-448, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33504706

RESUMO

Fe3O4 nanoparticles-based magnetic Mo(VI) surface ion-imprinted polymer (Mo(VI)-MIIP) was elaborated employing 4-vinyl pyridine as a functional monomer. The adsorbent preparation was confirmed by Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, vibrating sample magnetometer, thermogravimetric analysis, and surface area analysis. Batch adsorption experiments showed that the maximum adsorption capacity of Mo(VI)-MIIP was 296.40 mg g-1 at pH 3, while that of the magnetic non-imprinted polymer (MNIP) was only 147.10 mg g-1. The adsorption isotherm model was well fitted by the Langmuir isotherm model. The adsorption experiments revealed that Mo(VI)-MIIP reached adsorption equilibrium within 30 min, and the kinetics data fitting showed that the pseudo-second-order kinetics model suitably described the adsorption process. Mo(VI)-MIIP exhibited an excellent adsorption selectivity to Mo(VI) in binary mixtures of Mo(VI)/Cr(VI), Mo(VI)/Cu(II), Mo(VI)/H2PO44-, Mo(VI)/Zn(II), and Mo(VI)/I-, with relative selectivity coefficients toward MNIP of 13.71, 30.27, 20.01, 23.53, and 15.89, respectively. After six consecutive adsorption-desorption cycles, the adsorption capacity of Mo(VI)-MIIP decreased by 9.5% (from 228.4 mg g-1 to 206.7 mg g-1 at initial Mo(VI) concentration of 250 mg L-1), demonstrating its reusability.


Assuntos
Polímeros , Poluentes Químicos da Água , Adsorção , Cromo/análise , Concentração de Íons de Hidrogênio , Cinética , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA