Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(40): 17797-17806, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39344077

RESUMO

Nitric oxide (NO) is one of the major air pollutants that may cause ecological imbalance and severe human disease. However, the removal of NO faces challenges of low efficiency, high energy consumption, and production of toxic NO2 byproducts. Herein, we report an efficient *OOH intermediate-involved NO oxidation route with high NO3- selectivity via a gas phase photo-Fenton system. Fe single atoms (Fe SAs)-anchored NH2-UiO-66(Zr) (Fe SAs@NU) was synthesized. The five-coordinated Fe SAs undergo a transient structure reconstitution during the photo-Fenton process, which enables a novel heterolytic cleavage pathway of H2O2 to derive specific ·OOH/·O2- radicals as reactive oxygen species. Therefore, a high NO (550 parts per billion) removal rate of 81% (NO3- selectivity up to 99%) is achieved under visible-light irradiation (>420 nm). This study provides new insight for the high-performance photo-Fenton process via a transient structure reconstitution pathway for the removal of gas phase NOx pollutants.


Assuntos
Peróxido de Hidrogênio , Óxido Nítrico , Oxirredução , Óxido Nítrico/química , Peróxido de Hidrogênio/química , Ferro/química , Poluentes Atmosféricos/química
2.
Int Immunopharmacol ; 142(Pt A): 113031, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39217888

RESUMO

Unprecedented progress in immune checkpoint blockade (ICB) therapy has been made in cancer treatment. However, the response to ICB therapy is limited to a small subset of patients. The development of ICB sensitizers to improve cancer immunotherapy outcomes is urgently needed. Berberine (BBR), a well-known phytochemical compound isolated from many kinds of medicinal plants such as Berberis aristata, Coptis chinensis, and Phellondendron chinense Schneid, has shown the ability to inhibit the proliferation, invasion and metastasis of cancer cells. In this study, we investigated whether BBR can enhance the therapeutic benefit of ICB for melanoma, and explored the underlying mechanisms involved. The results showed that BBR could sensitize ICB to inhibit tumor growth and increased the survival rate of mice. Moreover, BBR stimulated intracellular ROS production partially by inhibiting NQO1 activity, which induced immunogenic cell death (ICD) in melanoma, elevated the levels of damage-associated molecular patterns (DAMPs), and subsequently activated DC cells and CD8 + T cells in vitro and in vivo. In conclusion, BBR is a novel ICD inducer. BBR could enhance the therapeutic benefit of ICB for melanoma. These effects were partially mediated through the inhibition of NQO1 and ROS activation.


Assuntos
Berberina , Inibidores de Checkpoint Imunológico , Camundongos Endogâmicos C57BL , NAD(P)H Desidrogenase (Quinona) , Espécies Reativas de Oxigênio , Berberina/farmacologia , Berberina/uso terapêutico , Animais , Espécies Reativas de Oxigênio/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Sinergismo Farmacológico , Feminino , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia
3.
ChemSusChem ; : e202401552, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39135510

RESUMO

Fe single atoms (Fe SAs) based catalysts have received much attention in electrocatalytic oxygen reduction reaction (ORR) due to its low-cost and high activity. Yet, the facile synthesis of efficient and stable Fe SAs catalysts are still challenging. Here, we reported a Fe SAs anchored on N-doped mesoporous carbon microspheres (NC) catalyst via spraying drying and pyrolysis processes. The highly active Fe SAs are uniformly distributed on the NC matrix, which prevented the aggregation benefiting from the enhanced Fe-N bonds. Also, the mesoporous carbon structure is favorable for fast electron and mass transfer. The optimized Fe@NC-2-900 catalyst shows positive half wave potential (E1/2 = 0.86 V vs reversible hydrogen electrodes (RHE)) and starting potential (Eonset = 0.98 V vs RHE) in ORR, which is comparable to the commercial Pt/C catalyst (E1/2= 0.87 V, Eonset = 1.08 V). Outstanding stability with a current retention rate of 92.5% for 9 hours and good methanol tolerance are achieved. The assembled zinc-air batteries showed good stability up to 500 hours at a current density of 5 mA cm-2. This work shows potentials of Fe SAs based catalysts for the practical application in ORR and pave a new avenue for promoting their catalytic performances.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36749108

RESUMO

Oxygen reduction and evolution reactions (ORR and OER, respectively) are vital steps for metal-air batteries, which are plagued by their sluggish kinetics. It is still a challenge to develop highly effective and low-cost non-noble-metal-based electrocatalysts. Herein, a simple and reliable method was reported to synthesize a Co2P-assisted Co single-atom (Co-N4 centers) electrocatalyst (Co2P/Co-NC) via evaporative drying and pyrolysis processes. The Co2P nanoparticles and Co-N4 centers are uniformly distributed on the nitrogen-doped carbon matrix. Notably, Co2P/Co-NC showed excellent activities in both ORR (initial potential, 1.01 V; half-wave potential, 0.88 V) and OER (overpotential, 369 mV at 10 mA cm-2). The above results were comparable to those of commercial catalysts (such as Pt/C and RuO2). Based on the experimental and theoretical analyses, the impressive activity can be ascribed to the tailored electronic structure of Co-N4 centers by the adjacent Co2P, enabling the electron transfer from the Co atom to the neighboring C atoms, leading to a downshift of the d-band center, and improved reaction kinetics were achieved. The assembled Zn-air batteries using Co2P/Co-NC as the air cathode showed a peak power density of 187 mW cm-2 and long-life cycling stability for 140 h at 5 mA cm-2. This work may pave a promising avenue to design hybrid bifunctional electrocatalysts for highly efficient ORR/OER.

5.
Int Immunopharmacol ; 108: 108861, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35597118

RESUMO

Herba Epimedii is a famous herb collected from China and Korea. It has been used for impotency, osteoporosis, and amnestic treatment for thousands of years. Icariin, a typical flavonoid compound isolated from Herba Epimedii, was reported as a potential anti-inflammatory drug. Icariside and icaritin are the two metabolites of icariin. Icariin and its metabolites have been used to treat a wide range of inflammatory diseases, such as atherosclerosis, Alzheimer's disease, depression, osteoarthritis, and asthma. They exert powerful suppression of proinflammatory signaling, such as NF-κB and MAPKs. More importantly, they can upregulate anti-inflammatory signaling, such as GR and Nrf2. In this study, we review the therapeutic effects and mechanisms of icariin and its metabolites in inflammatory diseases and provide novel insights into these potential anti-inflammatory drugs.


Assuntos
Flavonoides , Transdução de Sinais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA