RESUMO
Peanut yield in southern China is usually limited by calcium deficiency in soil. Most previous studies have found that small-seed varieties showed higher tolerance than large-seed varieties (e.g. Virginia type) under calcium deficiency, however, our preliminary research found that sensitive varieties also existed in small-seed counterparts. Few studies have been conducted to characterize low-calcium tolerance among small-seed germplasms with genetic diversity, and the differences in physiological characteristics between sensitive and tolerant varieties has not been reported yet. Thus, in order to better understand such differences, the current study firstly collected and characterized a diversity germplasm panel consisting of 50 small-seed peanut genotypes via a 2-year field trial, followed by the physiological characterization in sensitive (HN032) and tolerant (HN035) peanut genotypes under calcium deficiency. As a result, the adverse effects brought by calcium deficiency on calcium uptake and distribution in HN032 was much larger than HN035. In details, calcium uptake in the aboveground part (leaves and stems) was reduced by 16.17% and 33.66%, while in the underground part (roots and pods), it was reduced by 13.69% and 68.09% under calcium deficiency for HN035 and HN032, respectively; The calcium distribution rate in the pods of HN035 was 2.74 times higher than HN032. The utilization efficiency of calcium in the pods of HN035 was 1.68 and 1.37 times than that of HN032 under calcium deficiency and sufficiency, respectively. In addition, under calcium deficiency conditions, the activities of antioxidant enzymes SOD, POD, and CAT, as well as the MDA content, were significantly increased in the leaves of HN032, peanut yield was significantly reduced by 22.75%. However, there were no significant changes in the activities of antioxidant enzymes, MDA content, and peanut yield in HN035. Therefore, higher calcium absorption and utilization efficiency may be the key factors maintaining peanut yield in calcium-deficient conditions for tolerant genotypes. This study lays a solid foundation for selecting low-calcium tolerant varieties in future peanut breeding.
RESUMO
BACKGROUND: Peanut is an economically-important oilseed crop and needs a large amount of calcium for its normal growth and development. Calcium deficiency usually leads to embryo abortion and subsequent abnormal pod development. Different tolerance to calcium deficiency has been observed between different cultivars, especially between large and small-seed cultivars. RESULTS: In order to figure out different molecular mechanisms in defensive responses between two cultivars, we treated a sensitive (large-seed) and a tolerant (small-seed) cultivar with different calcium levels. The transcriptome analysis identified a total of 58 and 61 differentially expressed genes (DEGs) within small-seed and large-seed peanut groups under different calcium treatments, and these DEGs were entirely covered by gene modules obtained via weighted gene co-expression network analysis (WGCNA). KEGG enrichment analysis showed that the blue-module genes in the large-seed cultivar were mainly enriched in plant-pathogen attack, phenolic metabolism and MAPK signaling pathway, while the green-module genes in the small-seed cultivar were mainly enriched in lipid metabolism including glycerolipid and glycerophospholipid metabolisms. By integrating DEGs with WGCNA, a total of eight hub-DEGs were finally identified, suggesting that the large-seed cultivar concentrated more on plant defensive responses and antioxidant activities under calcium deficiency, while the small-seed cultivar mainly focused on maintaining membrane features to enable normal photosynthesis and signal transduction. CONCLUSION: The identified hub genes might give a clue for future gene validation and molecular breeding to improve peanut survivability under calcium deficiency.
Assuntos
Arachis , Cálcio , Arachis/genética , Arachis/metabolismo , Cálcio/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sementes/genética , TranscriptomaRESUMO
Peanut is an important oil and economic crop in China. The rainy season (April-June) in the downstream Yangtze River in China always leads to waterlogging, which seriously affects plant growth and development. Therefore, understanding the metabolic mechanisms under waterlogging stress is important for future waterlogging tolerance breeding in peanut. In this study, waterlogging treatment was carried out in two different peanut cultivars [Zhonghua 4 (ZH4) and Xianghua08 (XH08)] with different waterlogging tolerance. The data-independent acquisition (DIA) technique was used to quantitatively identify the differentially accumulated proteins (DAPs) between two different cultivars. Meanwhile, the functions of DAPs were predicted, and the interactions between the hub DAPs were analyzed. As a result, a total of 6,441 DAPs were identified in ZH4 and its control, of which 49 and 88 DAPs were upregulated and downregulated under waterlogging stress, respectively, while in XH08, a total of 6,285 DAPs were identified, including 123 upregulated and 114 downregulated proteins, respectively. The hub DAPs unique to the waterlogging-tolerant cultivar XH08 were related to malate metabolism and synthesis, and the utilization of the glyoxylic acid cycle, such as L-lactate dehydrogenase, NAD+-dependent malic enzyme, aspartate aminotransferase, and glutamate dehydrogenase. In agreement with the DIA results, the alcohol dehydrogenase and malate dehydrogenase activities in XH08 were more active than ZH4 under waterlogging stress, and lactate dehydrogenase activity in XH08 was prolonged, suggesting that XH08 could better tolerate waterlogging stress by using various carbon sources to obtain energy, such as enhancing the activity of anaerobic respiration enzymes, catalyzing malate metabolism and the glyoxylic acid cycle, and thus alleviating the accumulation of toxic substances. This study provides insight into the mechanisms in response to waterlogging stress in peanuts and lays a foundation for future molecular breeding targeting in the improvement of peanut waterlogging tolerance, especially in rainy area, and will enhance the sustainable development in the entire peanut industry.
RESUMO
BACKGROUND: It is important to explore renewable alternatives (e.g. biofuels) that can produce energy sources to help reduce reliance on fossil oils, and reduce greenhouse gases and waste solids resulted from fossil oils consumption. Camelina sativa is an oilseed crop which has received increasing attention due to its short life cycle, broader adaptation regions, high oil content, high level of omega-3 unsaturated fatty acids, and low-input requirements in agriculture practices. To expand its Camelina production areas into arid regions, there is a need to breed for new drought-tolerant cultivars. Leaf cuticular wax is known to facilitate plant development and growth under water-limited conditions. Dissecting the genetic loci underlying leaf cuticular waxes is important to breed for cultivars with improved drought tolerance. RESULTS: Here we combined phenotypic data and single nucleotide polymorphism (SNP) data from a spring C. sativa diversity panel using genotyping-by-sequencing (GBS) technology, to perform a large-scale genome-wide association study (GWAS) on leaf wax compositions. A total of 42 SNP markers were significantly associated with 15 leaf wax traits including major wax components such as total primary alcohols, total alkanes, and total wax esters as well as their constituents. The vast majority of significant SNPs were associated with long-chain carbon monomers (carbon chain length longer than C28), indicating the important effects of long-chain carbon monomers on leaf total wax biosynthesis. These SNP markers are located on genes directly or indirectly related to wax biosynthesis such as maintaining endoplasmic reticulum (ER) morphology and enabling normal wax secretion from ER to plasma membrane or Golgi network-mediated transport. CONCLUSIONS: These loci could potentially serve as candidates for the genetic control involved in intracellular wax transport that might directly or indirectly facilitate leaf wax accumulation in C. sativa and can be used in future marker-assisted selection (MAS) to breed for the cultivars with high wax content to improve drought tolerance.
Assuntos
Brassicaceae/genética , Folhas de Planta/química , Polimorfismo de Nucleotídeo Único , Ceras/química , Ceras/metabolismo , Álcoois/metabolismo , Aldeídos/metabolismo , Algoritmos , Alcanos/metabolismo , Transporte Biológico/genética , Genética Populacional , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Fenótipo , Folhas de Planta/genéticaRESUMO
There is a need to explore renewable alternatives (e.g., biofuels) that can produce energy sources to help reduce the reliance on fossil oils. In addition, the consumption of fossil oils adversely affects the environment and human health via the generation of waste water, greenhouse gases, and waste solids. Camelina sativa, originated from southeastern Europe and southwestern Asia, is being re-embraced as an industrial oilseed crop due to its high seed oil content (36-47%) and high unsaturated fatty acid composition (>90%), which are suitable for jet fuel, biodiesel, high-value lubricants and animal feed. C. sativa's agronomic advantages include short time to maturation, low water and nutrient requirements, adaptability to adverse environmental conditions and resistance to common pests and pathogens. These characteristics make it an ideal crop for sustainable agricultural systems and regions of marginal land. However, the lack of genetic and genomic resources has slowed the enhancement of this emerging oilseed crop and exploration of its full agronomic and breeding potential. Here, a core of 213 spring C. sativa accessions was collected and genotyped. The genotypic data was used to characterize genetic diversity and population structure to infer how natural selection and plant breeding may have affected the formation and differentiation within the C. sativa natural populations, and how the genetic diversity of this species can be used in future breeding efforts. A total of 6,192 high-quality single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing (GBS) technology. The average polymorphism information content (PIC) value of 0.29 indicate moderate genetic diversity for the C. sativa spring panel evaluated in this report. Population structure and principal coordinates analyses (PCoA) based on SNPs revealed two distinct subpopulations. Sub-population 1 (POP1) contains accessions that mainly originated from Germany while the majority of POP2 accessions (>75%) were collected from Eastern Europe. Analysis of molecular variance (AMOVA) identified 4% variance among and 96% variance within subpopulations, indicating a high gene exchange (or low genetic differentiation) between the two subpopulations. These findings provide important information for future allele/gene identification using genome-wide association studies (GWAS) and marker-assisted selection (MAS) to enhance genetic gain in C. sativa breeding programs.
RESUMO
BACKGROUND: Guayule (Parthenium argentatum A. Gray), a plant native to semi-arid regions of northern Mexico and southern Texas in the United States, is an alternative source for natural rubber (NR). Rapid screening tools are needed to replace the current labor-intensive and cost-inefficient method for quantifying rubber and resin contents. Near-infrared (NIR) spectroscopy is a promising technique that simplifies and speeds up the quantification procedure without losing precision. In this study, two spectral instruments were used to rapidly quantify resin and rubber contents in 315 ground samples harvested from a guayule germplasm collection grown under different irrigation conditions at Maricopa, AZ. The effects of eight different pretreatment approaches on improving prediction models using partial least squares regression (PLSR) were investigated and compared. Important characteristic wavelengths that contribute to prominent absorbance peaks were identified. RESULTS: Using two different NIR devices, ASD FieldSpec®3 performed better than Polychromix Phazir™ in improving R2 and residual predicative deviation (RPD) values of PLSR models. Compared to the models based on full-range spectra (750-2500 nm), using a subset of wavelengths (1100-2400 nm) with high sensitivity to guayule rubber and resin contents could lead to better prediction accuracy. The prediction power of the models for quantifying resin content was better than rubber content. CONCLUSIONS: In summary, the calibrated PLSR models for resin and rubber contents were successfully developed for a diverse guayule germplasm collection and were applied to roughly screen samples in a low-cost and efficient way. This improved efficiency could enable breeders to rapidly screen large guayule populations to identify cultivars that are high in rubber and resin contents.
RESUMO
Taraxacum kok-saghyz (TK) is a potential alternative crop for natural rubber (NR) production, due to its high molecular weight rubber, short breeding cycle, and diverse environmental adaptation. However, improvements in rubber yield and agronomically relevant traits are still required before it can become a commercially-viable crop. An RNA-Seq based transcriptome was developed from a pool of roots from genotypes with high and low rubber yield. A total of 55,532 transcripts with lengths over 200 bp were de novo assembled. As many as 472 transcripts were significantly homologous to 49 out of 50 known plant putative rubber biosynthesis related genes. 158 transcripts were significantly differentially expressed between high rubber and low rubber genotypes. 21,036 SNPs were different in high and low rubber TK genotypes. Among these, 50 SNPs were found within 39 transcripts highly homologous to 49 publically-searched rubber biosynthesis related genes. 117 SNPs were located within 36 of the differentially expressed gene sequences. This comprehensive TK transcriptomic reference, and large set of SNPs including putative exonic markers associated with rubber related gene homologues and differentially expressed genes, provides a solid foundation for further genetic dissection of rubber related traits, comparative genomics and marker-assisted selection for the breeding of TK.