Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Pharmacol Ther ; 263: 108724, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299577

RESUMO

Diabetes causes macrovascular and microvascular complications such as peripheral neuropathy. Glutamate regulates insulin secretion in pancreatic ß-cells, and its increased activity in the central nervous system is associated with peripheral neuropathy in animal models of diabetes. One strategy to modulate glutamatergic activity consists in the pharmacological manipulation of metabotropic glutamate receptors (mGluRs), which, compared to the ionotropic receptors, allow for a fine-tuning of neurotransmission that is compatible with therapeutic interventions. mGluRs are a family of eight G-protein coupled receptors classified into three groups (I-III) based on sequence homology, transduction mechanisms, and pharmacology. Activation of group II and III or inhibition of group I represents a strategy to counteract the glutamatergic hyperactivity associated with diabetic neuropathy. In this review article, we will discuss the role of glutamate receptors in the release of insulin and the development/treatment of diabetic neuropathy, with particular emphasis on their manipulation to prevent the glutamatergic hyperactivity associated with diabetic neuropathy.

2.
Elife ; 132024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172042

RESUMO

We used light-sensitive drugs to identify the brain region-specific role of mGlu5 metabotropic glutamate receptors in the control of pain. Optical activation of systemic JF-NP-26, a caged, normally inactive, negative allosteric modulator (NAM) of mGlu5 receptors, in cingulate, prelimbic, and infralimbic cortices and thalamus inhibited neuropathic pain hypersensitivity. Systemic treatment of alloswitch-1, an intrinsically active mGlu5 receptor NAM, caused analgesia, and the effect was reversed by light-induced drug inactivation in the prelimbic and infralimbic cortices, and thalamus. This demonstrates that mGlu5 receptor blockade in the medial prefrontal cortex and thalamus is both sufficient and necessary for the analgesic activity of mGlu5 receptor antagonists. Surprisingly, when the light was delivered in the basolateral amygdala, local activation of systemic JF-NP-26 reduced pain thresholds, whereas inactivation of alloswitch-1 enhanced analgesia. Electrophysiological analysis showed that alloswitch-1 increased excitatory synaptic responses in prelimbic pyramidal neurons evoked by stimulation of presumed BLA input, and decreased BLA-driven feedforward inhibition of amygdala output neurons. Both effects were reversed by optical silencing and reinstated by optical reactivation of alloswitch-1. These findings demonstrate for the first time that the action of mGlu5 receptors in the pain neuraxis is not homogenous, and suggest that blockade of mGlu5 receptors in the BLA may limit the overall analgesic activity of mGlu5 receptor antagonists. This could explain the suboptimal effect of mGlu5 NAMs on pain in human studies and validate photopharmacology as an important tool to determine ideal target sites for systemic drugs.


Assuntos
Luz , Receptor de Glutamato Metabotrópico 5 , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Animais , Masculino , Camundongos , Neuralgia/metabolismo , Tálamo/efeitos dos fármacos , Tálamo/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Analgésicos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Camundongos Endogâmicos C57BL
3.
Front Pharmacol ; 15: 1454601, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39175543

RESUMO

Background: Chronic pain significantly impacts quality of life and poses substantial public health challenges. Buprenorphine, a synthetic analog of thebaine, is recognized for its potential in managing moderate to severe chronic pain with fewer side effects and a lower incidence of tolerance compared to traditional opioids. Objective: This retrospective study aimed to assess the long-term efficacy and safety of buprenorphine transdermal patches in patients with moderate and severe chronic pain, with a focus on pain relief sustainability and tolerance development. Methods: This retrospective observational study involved 246 patients prescribed buprenorphine transdermal patches. We evaluated changes in pain intensity using the Numeric Rating Scale (NRS), assessed opioid tolerance based on FDA guidelines for morphine-equivalent doses, and measured patient-reported outcomes through the Patients' Global Impression of Change (PGIC). Any adverse events were also recorded. Results: Over the 36-month period, there was a significant reduction in NRS scores for both moderate and severe pain patients, demonstrating buprenorphine's sustained analgesic effect. Tolerance measurement indicated that no patients required increases in morphine-equivalent doses that would meet or exceed the FDA's threshold for opioid tolerance (60 mg/day of morphine or equivalent). Additionally, patient satisfaction was high, with the PGIC reflecting significant improvements in pain management and overall wellbeing. The side effects were minimal, with skin reactions and nausea being the most commonly reported but manageable adverse events. Conclusion: The study findings validate the long-term use of buprenorphine transdermal patches as an effective and safe option for chronic pain management, maintaining efficacy without significant tolerance development. These results support the continued and expanded use of buprenorphine in clinical settings, emphasizing its role in reducing the burdens of chronic pain and opioid-related side effects. Further research is encouraged to refine pain management protocols and explore buprenorphine's full potential in diverse patient populations.

4.
EMBO Rep ; 25(8): 3651-3677, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39039299

RESUMO

Endoplasmic reticulum (ER) remodeling is vital for cellular organization. ER-phagy, a selective autophagy targeting ER, plays an important role in maintaining ER morphology and function. The FAM134 protein family, including FAM134A, FAM134B, and FAM134C, mediates ER-phagy. While FAM134B mutations are linked to hereditary sensory and autonomic neuropathy in humans, the physiological role of the other FAM134 proteins remains unknown. To address this, we investigate the roles of FAM134 proteins using single and combined knockouts (KOs) in mice. Single KOs in young mice show no major phenotypes; however, combined Fam134b and Fam134c deletion (Fam134b/cdKO), but not the combination including Fam134a deletion, leads to rapid neuromuscular and somatosensory degeneration, resulting in premature death. Fam134b/cdKO mice show rapid loss of motor and sensory axons in the peripheral nervous system. Long axons from Fam134b/cdKO mice exhibit expanded tubular ER with a transverse ladder-like appearance, whereas no obvious abnormalities are present in cortical ER. Our study unveils the critical roles of FAM134C and FAM134B in the formation of tubular ER network in axons of both motor and sensory neurons.


Assuntos
Axônios , Retículo Endoplasmático , Proteínas de Membrana , Animais , Humanos , Camundongos , Axônios/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout
5.
Acta Neuropathol Commun ; 12(1): 113, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992700

RESUMO

BACKGROUND: Despite extensive studies on the neurobiological correlates of traumatic brain injury (TBI), little is known about its molecular determinants on long-term consequences, such as dementia and Alzheimer's disease (AD). METHODS: Here, we carried out behavioural studies and an extensive biomolecular analysis, including inflammatory cytokines, gene expression and the combination of LC-HRMS and MALDI-MS Imaging to elucidate the targeted metabolomics and lipidomics spatiotemporal alterations of brains from wild-type and APP-SWE mice, a genetic model of AD, at the presymptomatic stage, subjected to mild TBI. RESULTS: We found that brain injury does not affect cognitive performance in APP-SWE mice. However, we detected an increase of key hallmarks of AD, including Aß1-42 levels and BACE1 expression, in the cortices of traumatized transgenic mice. Moreover, significant changes in the expanded endocannabinoid (eCB) system, or endocannabinoidome (eCBome), occurred, including increased levels of the endocannabinoid 2-AG in APP-SWE mice in both the cortex and hippocampus, and N-acylserotonins, detected for the first time in the brain. The gene expression of enzymes for the biosynthesis and inactivation of eCBs and eCB-like mediators, and some of their main molecular targets, also underwent significant changes. We also identified the formation of heteromers between cannabinoid 1 (CB1) and serotonergic 2A (5HT2A) receptors, whose levels increased in the cortex of APP-SWE mTBI mice, possibly contributing to the exacerbated pathophysiology of AD induced by the trauma. CONCLUSIONS: Mild TBI induces biochemical changes in AD genetically predisposed mice and the eCBome may play a role in the pathogenetic link between brain injury and neurodegenerative disorders also by interacting with the serotonergic system.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Endocanabinoides , Camundongos Transgênicos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Camundongos , Endocanabinoides/metabolismo , Disfunção Cognitiva/metabolismo , Serotonina/metabolismo , Biomarcadores/metabolismo , Masculino , Concussão Encefálica/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Sintomas Prodrômicos , Peptídeos beta-Amiloides/metabolismo
6.
Biomed Pharmacother ; 175: 116600, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670046

RESUMO

There is a growing evidence suggesting the association of vitamin D deficiency (VDD) and cognitive impairment. In this study we evaluated the possible involvement of gut microbiota in the cognitive impairments mediated by VDD and investigated the effects of pharmacological treatment with the oxazoline derivative of the aliamide palmitoylethanolamide, 2-Pentadecyl-2-oxazoline (PEA-OXA). Mice were submitted to behavioural, biochemical and electrophysiological analysis to assess whether their vitamin D status affected cognitive performance together with gut microbiota composition. In VDD mice we found cognitive malfunctioning associated with reduced neuroplasticity, indicated by impaired long term potentiation, and neuroinflammation at the hippocampal level. Importantly, PEA-OXA counteracted the cognitive impairments and modified the biochemical and functional changes induced by VDD. Additionally, PEA-OXA treatment enhanced gut microbiota diversity, which tended to be decreased by VDD only in female mice, elevated the relative abundance of lactic and butyric acid-producing families, i.e. Aerococcaceae and Butyricicoccaceae, and reversed the VDD-induced decrease of butyrate-producing beneficial genera, such as Blautia in female mice, and Roseburia in male mice. These data provide novel insights for a better understanding of the cognitive decline induced by VDD and related gut dysbiosis and its potential therapeutic treatment.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Deficiência de Vitamina D , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Masculino , Feminino , Camundongos , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Etanolaminas/farmacologia , Etanolaminas/metabolismo , Disbiose , Amidas/farmacologia , Cognição/efeitos dos fármacos , Modelos Animais de Doenças
7.
Brain Behav Immun ; 119: 408-415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636564

RESUMO

Vestibulodynia is a complex pain disorder characterized by chronic discomfort in the vulvar region, often accompanied by tactile allodynia and spontaneous pain. In patients a depressive behaviour is also observed. In this study, we have used a model of vestibulodynia induced by complete Freund's adjuvant (CFA) focusing our investigation on the spinal cord neurons and microglia. We investigated tactile allodynia, spontaneous pain, and depressive-like behavior as key behavioral markers of vestibulodynia. In addition, we conducted in vivo electrophysiological recordings to provide, for the first time to our knowledge, the characterization of the spinal sacral neuronal activity in the L6-S1 dorsal horn of the spinal cord. Furthermore, we examined microglia activation in the L6-S1 dorsal horn using immunofluorescence, unveiling hypertrophic phenotypes indicative of neuroinflammation in the spinal cord. This represents a novel insight into the role of microglia in vestibulodynia pathology. To address the therapeutic aspect, we employed pharmacological interventions using GABApentin, amitriptyline, and PeaPol. Remarkably, all three drugs, also used in clinic, showed efficacy in alleviating tactile allodynia and depressive-like behavior. Concurrently, we also observed a normalization of the altered neuronal firing and a reduction of microglia hypertrophic phenotypes. In conclusion, our study provides a comprehensive understanding of the CFA-induced model of vestibulodynia, encompassing behavioral, neurophysiological and neuroinflammatory aspects. These data pave the way to investigate spinal cord first pain plasticity in vestibulodynia.


Assuntos
Modelos Animais de Doenças , Adjuvante de Freund , Hiperalgesia , Microglia , Neurônios , Medula Espinal , Vulvodinia , Animais , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Camundongos , Hiperalgesia/fisiopatologia , Hiperalgesia/metabolismo , Vulvodinia/fisiopatologia , Vulvodinia/metabolismo , Feminino , Microglia/metabolismo , Neurônios/metabolismo , Doenças Neuroinflamatórias/fisiopatologia , Gabapentina/farmacologia , Amitriptilina/farmacologia , Depressão/fisiopatologia , Depressão/metabolismo , Camundongos Endogâmicos C57BL
8.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38260426

RESUMO

Knowing the site of drug action is important to optimize effectiveness and address any side effects. We used light-sensitive drugs to identify the brain region-specific role of mGlu5 metabotropic glutamate receptors in the control of pain. Optical activation of systemic JF-NP-26, a caged, normally inactive, negative allosteric modulator (NAM) of mGlu5 receptors, in cingulate, prelimbic and infralimbic cortices and thalamus inhibited neuropathic pain hypersensitivity. Systemic treatment of alloswitch-1, an intrinsically active mGlu5 receptor NAM, caused analgesia, and the effect was reversed by light-induced drug inactivation in in the prelimbic and infralimbic cortices, and thalamus. This demonstrates that mGlu5 receptor blockade in the medial prefrontal cortex and thalamus is both sufficient and necessary for the analgesic activity of mGlu5 receptor antagonists. Surprisingly, when light was delivered in the basolateral amygdala, local activation of systemic JF-NP-26 reduced pain thresholds, whereas inactivation of alloswitch-1 enhanced analgesia. Electrophysiological analysis showed that alloswitch-1 increased excitatory synaptic responses in prelimbic pyramidal neurons evoked by stimulation of BLA input, and decreased feedforward inhibition of amygdala output neurons by BLA. Both effects were reversed by optical silencing and reinstated by optical reactivation of alloswitch-1. These findings demonstrate for the first time that the action of mGlu5 receptors in the pain neuraxis is not homogenous, and suggest that blockade of mGlu5 receptors in the BLA may limit the overall analgesic activity of mGlu5 receptor antagonists. This could explain the suboptimal effect of mGlu5 NAMs on pain in human studies and validate photopharmacology as an important tool to determine ideal target sites for systemic drugs.

10.
Curr Neuropharmacol ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38073106

RESUMO

BACKGROUND: Integrins, important extracellular matrix (ECM) receptor proteins, are affected by inflammation and can participate in the maintenance of many painful conditions. Although they are ubiquitous and changeable across all cell types, the roles of these cell adhesion molecules in pathological pain have not been fully explored. OBJECTIVE: We evaluated the effects of the subcutaneous injection of lebecetin, a C-type lectin isolated from Macrovipera lebetina snake venom, previously reported to inhibit α5ß1 and αv integrin activity, on different components of inflammation induced by the formalin administration in the hind paw of mice. METHODS: The formalin-induced nocifensive behavior, edema, and histopathological changes in the hind paw associated with cytokine, iNOS, and COX2 expression, nociceptive-specific neuron activity, and microglial activation analysis in the spinal cord were evaluated in mice receiving vehicle or lebecetin pretreatment. RESULTS: Lebecetin inhibited the nocifensive responses in the formalin test, related edema, and cell infiltration in the injected paw in a biphasic, hormetic-like, and dose-dependent way. According to that hormetic trend, a reduction in pro-inflammatory cytokines IL-6, IL-8, and TNF-alpha and upregulation of the anti-inflammatory cytokine IL-10 in the spinal cord were found with the lowest doses of lebecetin. Moreover, COX2 and iNOS expression in serum and spinal cord followed the same biphasic pattern of cytokines. Finally, nociceptive neurons sensitization and activated microglia were normalized in the dorsal horn of the spinal cord by lebecetin. CONCLUSION: These findings implicate specific roles of integrins in inflammation and tonic pain, as well as in the related central nervous system sequelae.

11.
Biomolecules ; 13(12)2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38136672

RESUMO

Chronic neuropathic pain (NP) is an increasingly prevalent disease and leading cause of disability which is challenging to treat. Several distinct classes of drugs are currently used for the treatment of chronic NP, but each drug targets only narrow components of the underlying pathophysiological mechanisms, bears limited efficacy, and comes with dose-limiting side effects. Multimodal therapies have been increasingly proposed as potential therapeutic approaches to target the multiple mechanisms underlying nociceptive transmission and modulation. However, while preclinical studies with combination therapies showed promise to improve efficacy over monotherapy, clinical trial data on their efficacy in specific populations are lacking and increased risk for adverse effects should be carefully considered. Drug-drug co-crystallization has emerged as an innovative pharmacological approach which can combine two or more different active pharmaceutical ingredients in a single crystal, optimizing pharmacokinetic and physicochemical characteristics of the native molecules, thus potentially capitalizing on the synergistic efficacy between classes of drugs while simplifying adherence and minimizing the risk of side effects by reducing the doses. In this work, we review the current pharmacological options for the treatment of chronic NP, focusing on combination therapies and their ongoing developing programs and highlighting the potential of co-crystals as novel approaches to chronic NP management.


Assuntos
Neuralgia , Humanos , Neuralgia/tratamento farmacológico , Quimioterapia Combinada , Terapia Combinada
12.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762702

RESUMO

Transient global amnesia, both persistent and transient, is a very common neuropsychiatric syndrome. Among animal models for amnesia and testing new drugs, the scopolamine test is the most widely used for transient global amnesia (TGA). This study examined the scopolamine-induced deficits in working memory, discriminative memory, anxiety, and motor activity in the presence of intranasal PEA-OXA, a dual antagonist of presynaptic α2 and H3 receptors. Male C57BL/6 mice were treated with intraperitoneal scopolamine (1 mg/kg) with or without pre-treatment (15 min) or post-treatment (15 min) with intranasal PEA-OXA (10 mg/kg). It was seen that scopolamine induced deficits of discriminative and spatial memory and motor deficit. These changes were associated with a loss of synaptic plasticity in the hippocampal dentate gyrus: impaired LTP after lateral entorhinal cortex/perforant pathway tetanization. Furthermore, hippocampal Ach levels were increased while ChA-T expression was reduced following scopolamine administration. PEA-OXA either prevented or restored the scopolamine-induced cognitive deficits (discriminative and spatial memory). However, the same treatment did not affect the altered motor activity or anxiety-like behavior induced by scopolamine. Consistently, electrophysiological analysis showed LTP recovery in the DG of the hippocampus, while the Ach level and ChoA-T were normalized. This study confirms the neuroprotective and pro-cognitive activity of PEA-OXA (probably through an increase in the extracellular levels of biogenic amines) in improving transient memory disorders for which the available pharmacological tools are obsolete or inadequate and not directed on specific pathophysiological targets.

13.
Sci Rep ; 13(1): 11061, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422571

RESUMO

Cannabis is a multifaceted plant with numerous therapeutic properties on one hand, and controversial psychotropic activities on the other hand, which are modulated by CB1 endocannabinoid receptors. Δ9-Tetrahydrocannabinol (Δ9-THC) has been identified as the main component responsible for the psychotropic effects, while its constitutional isomer cannabidiol (CBD) has shown completely different pharmacological properties. Due to its reported beneficial effects, Cannabis has gained global popularity and is openly sold in shops and online. To circumvent legal restrictions, semi-synthetic derivatives of CBD are now frequently added to cannabis products, producing "high" effects similar to those induced by Δ9-THC. The first semi-synthetic cannabinoid to appear in the EU was obtained through cyclization and hydrogenation of CBD, and is known as hexahydrocannabinol (HHC). Currently, there is limited knowledge regarding HHC, its pharmacological properties, and its prevalence, as it is not commonly investigated in routine toxicological assays. In this study, synthetic strategies were explored to obtain an excess of the active epimer of HHC. Furthermore, the two epimers were purified and individually tested for their cannabinomimetic activity. Lastly, a simple and rapid chromatographic method employing a UV detector and a high-resolution mass spectrometer was applied to identify and quantify up to ten major phytocannabinoids, as well as the HHC epimers, in commercial cannabis samples.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Dronabinol/farmacologia , Psicotrópicos/farmacologia , Canabinoides/farmacologia , Cannabis/química , Canabidiol/farmacologia , Canabidiol/química
14.
Life Sci ; 329: 121986, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516429

RESUMO

Neurological diseases, including traumatic brain injuries, stroke (haemorrhagic and ischemic), and inherent neurodegenerative diseases cause acquired disability in humans, representing a leading cause of death worldwide. The Mediator complex (MED) is a large, evolutionarily conserved multiprotein that facilities the interaction between transcription factors and RNA Polymerase II in eukaryotes. Some MED subunits have been found altered in the brain, although their specific functions in neurodegenerative diseases are not fully understood. Mutations in MED subunits were associated with a wide range of genetic diseases for MED12, MED13, MED13L, MED20, MED23, MED25, and CDK8 genes. In addition, MED12 and MED23 were deregulated in the Alzheimer's Disease. Interestingly, most of the genomic mutations have been found in the subunits of the kinase module. To date, there is only one evidence on MED1 involvement in post-stroke cognitive deficits. Although the underlying neurodegenerative disorders may be different, we are confident that the signal cascades of the biological-cognitive mechanisms of brain adaptation, which begin after brain deterioration, may also differ. Here, we analysed relevant studies in English published up to June 2023. They were identified through a search of electronic databases including PubMed, Medline, EMBASE and Scopus, including search terms such as "Mediator complex", "neurological disease", "brains". Thematic content analysis was conducted to collect and summarize all studies demonstrating MED alteration to understand the role of this central transcriptional regulatory complex in the brain. Improved and deeper knowledge of the regulatory mechanisms in neurological diseases can increase the ability of physicians to predict onset and progression, thereby improving diagnostic care and providing appropriate treatment decisions.


Assuntos
Quinase 8 Dependente de Ciclina , Fatores de Transcrição , Humanos , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Fatores de Transcrição/metabolismo , Mutação , Complexo Mediador/genética
15.
J Med Chem ; 66(10): 6994-7015, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37192374

RESUMO

We describe an in silico-guided rational drug design and the synthesis of the suggested ligands, aimed at improving the TRPV1-ligand binding properties and the potency of N-(4-hydroxy-3-methoxybenzyl)-4-(thiophen-2-yl) butanamide I, a previously identified TRPV1 agonist. The docking experiments followed by molecular dynamics simulations and thermodynamic analysis led the drug design toward both the introduction of a lipophilic iodine and a flat pyridine/benzene at position 5 of the thiophene nucleus. Most of the synthesized compounds showed high TRPV1 efficacy and potency as well as selectivity. The molecular modeling analysis highlighted crucial hydrophobic interactions between Leu547 and the iodo-thiophene nucleus, as in amide 2a, or between Phe543 and the pyridinyl moiety, as in 3a. In the biological evaluation, both compounds showed protective properties against oxidative stress-induced ROS formation in human keratinocytes. Additionally, while 2a showed neuroprotective effects in both neurons and rat brain slices, 3a exhibited potent antinociceptive effect in vivo..


Assuntos
Simulação de Dinâmica Molecular , Tiofenos , Ratos , Animais , Humanos , Tiofenos/farmacologia , Tiofenos/química , Estresse Oxidativo , Amidas , Desenho de Fármacos , Simulação de Acoplamento Molecular , Canais de Cátion TRPV/agonistas
16.
Biomed Pharmacother ; 163: 114845, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37167730

RESUMO

Chronic pain is an enormous public health concern, and its treatment is still an unmet medical need. Starting from data highlighting the promising effects of some nonsteroidal anti-inflammatory drugs in combination with gabapentin in pain treatment, we sought to combine ketoprofen lysine salt (KLS) and gabapentin to obtain an effective multimodal therapeutic approach for chronic pain. Using relevant in vitro models, we first demonstrated that KLS and gabapentin have supra-additive effects in modulating key pathways in neuropathic pain and gastric mucosal damage. To leverage these supra-additive effects, we then chemically combined the two drugs via co-crystallization to yield a new compound, a ternary drug-drug co-crystal of ketoprofen, lysine and gabapentin (KLS-GABA co-crystal). Physicochemical, biodistribution and pharmacokinetic studies showed that within the co-crystal, ketoprofen reaches an increased gastrointestinal solubility and permeability, as well as a higher systemic exposure in vivo compared to KLS alone or in combination with gabapentin, while both the constituent drugs have increased central nervous system permeation. These unique characteristics led to striking, synergistic anti-nociceptive and anti-inflammatory effects of KLS-GABA co-crystal, as well as significantly reduced spinal neuroinflammation, in translational inflammatory and neuropathic pain rat models, suggesting that the synergistic therapeutic effects of the constituent drugs are further boosted by the co-crystallization. Notably, while strengthening the therapeutic effects of ketoprofen, KLS-GABA co-crystal showed remarkable gastrointestinal tolerability in both inflammatory and chronic neuropathic pain rat models. In conclusion, these results allow us to propose KLS-GABA co-crystal as a new drug candidate with high potential clinical benefit-to-risk ratio for chronic pain treatment.


Assuntos
Dor Crônica , Cetoprofeno , Neuralgia , Ratos , Animais , Cetoprofeno/efeitos adversos , Gabapentina/uso terapêutico , Doenças Neuroinflamatórias , Lisina/uso terapêutico , Lisina/farmacologia , Dor Crônica/tratamento farmacológico , Distribuição Tecidual , Anti-Inflamatórios não Esteroides/efeitos adversos , Neuralgia/tratamento farmacológico
17.
Neuropharmacology ; 228: 109456, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796675

RESUMO

Following insults or injury, microglia cells are activated contributing to the cytotoxic response or by promoting an immune-mediated damage resolution. Microglia cells express HCA2R, a hydroxy carboxylic acid (HCA) receptor, which has been shown to mediate neuroprotective and anti-inflammatory effects. In this study we found that HCAR2 expression levels were increased in cultured rat microglia cells after Lipopolysaccharide (LPS) exposure. In a similar fashion, the treatment with MK 1903, a potent full agonist of HCAR2, increased the receptor protein levels. Moreover, HCAR2 stimulation prevented i) cells viability ii) morphological activation iii) pro/anti-inflammatory mediators production in LPS-treated cells. Likewise, HCAR2 stimulation reduced the proinflammatory mediators mRNA expression induced by neuronal chemokine fractalkine (FKN), a neuronal derived chemokine activating its unique receptor, chemokine receptor 1 (CX3CR1) on microglia surface. Interestingly, electrophysiological recordings in vivo revealed that MK1903 was able to prevent the increase of the nociceptive neurons (NS) firing activity mediated by the spinal FKN application in healthy rats. Collectively, our data demonstrate that HCAR2 is functionally expressed in microglia, by showing its capability to shift microglia toward an anti-inflammatory phenotype. Moreover, we indicated the contribute of HCAR2 in the FKN signaling and suggested a possible HCAR2/CX3CR1 functional interaction. This study paves the way for further investigations aimed at understanding the role HCAR2 as potential target in neuroinflammation-based CNS disorders. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".


Assuntos
Quimiocinas CXC , Microglia , Ratos , Animais , Quimiocinas CXC/metabolismo , Quimiocinas CXC/farmacologia , Lipopolissacarídeos/farmacologia , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo
18.
Pediatr Res ; 93(3): 520-525, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35717484

RESUMO

OBJECTIVES: The Cannabinoid Receptor type 2 (CB2) is involved in inflammation and immune cell modulation. In previous studies, we demonstrated the association between the CNR2 rs35761398 polymorphism and the risk for pediatric inflammatory bowel disease (IBD). In this study, we analyzed the intestinal biopsies from Crohn disease (CD) and ulcerative colitis (UC) pediatric patients at the diagnosis to evaluate the expression of CB2 and several factors associated with IBD inflammatory pathways. METHODS: We enrolled five patients with CD, five with UC, and five controls (CTR). We analyzed ileum and rectum biopsies from patients of each group evaluating the expression of CB2, Toll-like receptor 4, interleukin-6, and interleukin-1ß by western blot and immunofluorescence. RESULTS: Western blot analysis showed a significant increase of CB2 in the CD ileum and in the UC rectum biopsies and an increase of TLR4 in the UC rectum. We also observed a significant over-expression of the IL-6 in UC rectum. The immunofluorescence analysis confirmed western blot data, showing also a T-lymphocytes infiltration colocalized with CB2 expression in the CD ileum and UC rectum. CONCLUSIONS: Our results show an upregulation of CB2 in pediatric IBD, which might have implications for drug discovery. IMPACT: The Cannabinoid Receptor type 2 (CB2) is involved in the inflammation and modulation of the immune response in pediatric inflammatory bowel disease (IBD). CB2 receptor is more expressed in the inflamed intestine of pediatric IBD patients. CB2 could be used as a potential therapeutic target to reduce IBD-related inflammatory state in childhood.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Criança , Receptor CB2 de Canabinoide , Colite Ulcerativa/diagnóstico , Doença de Crohn/diagnóstico , Biópsia , Reto , Interleucina-6 , Inflamação
19.
Biomolecules ; 12(10)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36291664

RESUMO

Neuroinflammation is an emerging therapeutic target in chronic degenerative and autoimmune diseases, such as osteoarthritis (OA) and rheumatoid arthritis. Mast cells (MCs) play a key role in the homeostasis of joints and the activation of MCs induces the release of a huge number of mediators, which fuel the fire of neuroinflammation. Particularly, synovial MCs release substances which accelerate the degradation of the extra-cellular matrix causing morphological joint changes and cartilage damage and inducing the proliferation of synovial fibroblasts, angiogenesis, and the sprouting of sensory nerve fibers, which mediate chronic pain. Palmitoylethanolamide (PEA) is a well-known MCs modulator, but in osteoarthritic joints, its levels are significantly reduced. Adelmidrol, a synthetic derivate of azelaic acid belonging to the ALIAmides family, is a PEA enhancer. Preclinical and clinical investigations showed that the intra-articular administration of Adelmidrol significantly reduced MC infiltration, pro-inflammatory cytokine release, and cartilage degeneration. The combination of 1% high molecular weight hyaluronic acid and 2% Adelmidrol has been effectively used for knee osteoarthritis and, a significant improvement in analgesia and functionality has been recorded.


Assuntos
Ácido Hialurônico , Osteoartrite do Joelho , Humanos , Doenças Neuroinflamatórias , Citocinas
20.
Healthcare (Basel) ; 10(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36292299

RESUMO

BACKGROUND: Unplanned hospital readmissions (HRAs) are very common in cancer patients. These events can potentially impair the patients' health-related quality of life and increase cancer care costs. In this study, data-driven prediction models were developed for identifying patients at a higher risk for HRA. METHODS: A large dataset on cancer pain and additional data from clinical registries were used for conducting a Bayesian network analysis. A cohort of gastrointestinal cancer patients was selected. Logical and clinical relationships were a priori established to define and associate the considered variables including cancer type, body mass index (BMI), bone metastasis, serum albumin, nutritional support, breakthrough cancer pain (BTcP), and radiotherapy. RESULTS: The best model (Bayesian Information Criterion) demonstrated that, in the investigated setting, unplanned HRAs are directly related to nutritional support (p = 0.05) and radiotherapy. On the contrary, BTcP did not significantly affect HRAs. Nevertheless, the correlation between variables showed that when BMI ≥ 25 kg/m2, the spontaneous BTcP is more predictive for HRAs. CONCLUSIONS: Whilst not without limitations, a Bayesian model, combined with a careful selection of clinical variables, can represent a valid strategy for predicting unexpected HRA events in cancer patients. These findings could be useful for calibrating care interventions and implementing processes of resource allocation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA