Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Evolution ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554118

RESUMO

Gynodioecy, the coexistence of hermaphrodites with females, often reflects conflicts between cytoplasmic male sterility (CMS) genes and nuclear genes restoring male fertility. CMS is frequent in plants, and has been recently discovered in one animal: the freshwater snail Physa acuta. In this system, CMS was linked to a single divergent mitochondrial genome (D), devoid of apparent nuclear restoration. Our study uncovers a second, novel CMS-associated mitogenome (K) in Physa acuta, demonstrating an extraordinary acceleration of molecular evolution throughout the entire K mitochondrial genome, akin to the previously observed pattern in D. This suggests a pervasive occurrence of accelerated evolution in both CMS-associated lineages. Through a 17-generation introgression experiment, we further show that nuclear polymorphisms in K-mitogenome individuals contribute to the restoration of male function in natural populations. Our results underscore shared characteristics in gynodioecy between plants and animals, emphasizing the presence of multiple CMS mitotypes and cyto-nuclear conflicts. This reaffirms the pivotal role of mitochondria in influencing male function and in generating genomic conflicts that impact reproductive processes in animals.

2.
Curr Biol ; 32(10): 2325-2333.e6, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35483362

RESUMO

Cytoplasmic male sterility (CMS) is a form of genetic conflict over sex determination that results from differences in modes of inheritance between genomic compartments.1-3 Indeed, maternally transmitted (usually mitochondrial) genes sometimes enhance their transmission by suppressing the male function in a hermaphroditic organism to the detriment of biparentally inherited nuclear genes. Therefore, these hermaphrodites become functionally female and may coexist with regular hermaphrodites in so-called gynodioecious populations.3 CMS has been known in plants since Darwin's times4 but is previously unknown in the animal kingdom.5-8 We relate the first observation of CMS in animals. It occurs in a freshwater snail population, where some individuals appear unable to sire offspring in controlled crosses and show anatomical, physiological, and behavioral characters consistent with a suppression of the male function. Male sterility is associated with a mitochondrial lineage that underwent a spectacular acceleration of DNA substitution rates, affecting the entire mitochondrial genome-this acceleration concerns both synonymous and non-synonymous substitutions and therefore results from increased mitogenome mutation rates. Consequently, mitochondrial haplotype divergence within the population is exceptionally high, matching that observed between snail taxa that diverged 475 million years ago. This result is reminiscent of similar accelerations in mitogenome evolution observed in plant clades where gynodioecy is frequent,9,10 both being consistent with arms-race evolution of genome regions implicated in CMS.11,12 Our study shows that genomic conflicts can trigger independent evolution of similar sex-determination systems in plants and animals and dramatically accelerate molecular evolution.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , Animais , DNA Mitocondrial/genética , Evolução Molecular , Feminino , Haplótipos , Mitocôndrias/genética
3.
Proc Biol Sci ; 287(1941): 20201761, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33352075

RESUMO

Individuals differ in personality and immediate behavioural plasticity. While developmental environment may explain this group diversity, the effect of parental environment is still unexplored-a surprising observation since parental environment influences mean behaviour. We tested whether developmental and parental environments impacted personality and immediate plasticity. We raised two generations of Physa acuta snails in the laboratory with or without developmental exposure to predator cues. Escape behaviour was repeatedly assessed on adult snails with or without predator cues in the immediate environment. On average, snails were slower to escape if they or their parents had been exposed to predator cues during development. Snails were also less plastic in response to immediate predation risk on average if they or their parents had been exposed to predator cues. Group diversity in personality was greater in predator-exposed snails than unexposed snails, while parental environment did not influence it. Group diversity in immediate plasticity was not significant. Our results suggest that only developmental environment plays a key role in the emergence of group diversity in personality, but that parental environment influences mean behavioural responses to the environmental change. Consequently, although different, both developmental and parental cues may have evolutionary implications on behavioural responses.


Assuntos
Comportamento Animal , Caramujos/fisiologia , Animais , Evolução Biológica , Pais , Personalidade , Comportamento Predatório
4.
Ecol Evol ; 10(5): 2367-2376, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32184987

RESUMO

Phenotypic plasticity can occur across generations (transgenerational plasticity) when environments experienced by the previous generations influenced offspring phenotype. The evolutionary importance of transgenerational plasticity, especially regarding within-generational plasticity, is a currently hot topic in the plasticity framework. How long an environmental effect can persist across generations and whether multigenerational effects are cumulative are primordial-for the evolutionary significance of transgenerational plasticity-but still unresolved questions. In this study, we investigated how the grand-parental, parental and offspring exposures to predation cues shape the predator-induced defences of offspring in the Physa acuta snail. We expected that the offspring phenotypes result from a three-way interaction among grand-parental, parental and offspring environments. We exposed three generations of snails without and with predator cues according to a full factorial design and measured offspring inducible defences. We found that both grand-parental and parental exposures to predator cues impacted offspring antipredator defences, but their effects were not cumulative and depended on the defences considered. We also highlighted that the grand-parental environment did alter reaction norms of offspring shell thickness, demonstrating an interaction between the grand-parental transgenerational plasticity and the within-generational plasticity. We concluded that the effects of multigenerational exposure to predator cues resulted on complex offspring phenotypic patterns which are difficult to relate to adaptive antipredator advantages.

5.
Wellcome Open Res ; 5: 121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33521328

RESUMO

We describe here a protocol for the generation of sequence-ready libraries for population epigenomics studies. The protocol is a streamlined version of the Assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq) that provides a positive display of accessible, presumably euchromatic regions. The protocol is straightforward and can be used with small individuals such as daphnia and schistosome worms, and probably many other biological samples of comparable size, and it requires little molecular biology handling expertise.

6.
Gene ; 729: 144166, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678264

RESUMO

Recent insights in evolutionary biology have shed light on epigenetic variation that interacts with genetic variation to convey heritable information. An important characteristic of epigenetic changes is that they can be produced in response to environmental cues and passed on to later generations, potentially facilitating later genetic adaptation. While our understanding of epigenetic mechanisms in vertebrates is rapidly growing, our knowledge about invertebrates remains lower, or is restricted to model organisms. Mollusks in particular, are a large group of invertebrates, with several species important for ecosystem function, human economy and health. In this review, we attempt to summarize the literature on epigenetic and intergenerational studies in mollusk species, with potential importance for adaptive evolution. Our review highlights that two molecular bearers of epigenetic information, DNA methylation and histone modifications, are key features for development in mollusk species, and both are sensitive to environmental conditions to which developing individuals are exposed. Further, although studies are still scarce, various environmental factors (e.g. predator cues, chemicals, parasites) can induce intergenerational effects on the phenotype (life-history traits, morphology, behaviour) of several mollusk taxa. More work is needed to better understand whether environmentally-induced changes in DNA methylation and histone modifications have phenotypic impacts, whether they can be inherited through generations and their role in intergenerational effects on phenotype. Such work may bring insights into the potential role of epigenetic in adaptation and evolution in mollusks.


Assuntos
Epigênese Genética/genética , Moluscos/genética , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Metilação de DNA/genética , Bases de Dados Genéticas , Ecossistema , Epigenômica/métodos , Interação Gene-Ambiente , Variação Genética , Fenótipo
7.
Mol Ecol ; 28(11): 2786-2801, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31067349

RESUMO

Ectotherm development rates often show adaptive divergence along climatic gradients, but the genetic basis for this variation is rarely studied. Here, we investigated the genetic basis for phenotypic variation in larval development in the moor frog Rana arvalis from five regions along a latitudinal gradient from Germany to northern Sweden. We focused on the C/EBP-1 gene, a transcription factor associated with larval development time. Allele frequencies at C/EBP-1 varied strongly among geographical regions. Overall, the distribution of alleles along the gradient was in concordance with the dual post-glacial colonization routes into Scandinavia, with a large number of alleles exclusively present along the southern colonization route. Only three of 38 alleles were shared between the routes. Analysis of contemporary selection on C/EBP-1 showed divergent selection among the regions, probably reflecting adaptation to the local environmental conditions, although this was especially strong between southern and northern regions coinciding also with lineages from different colonization routes. Overall, the C/EBP-1 gene has historically been under purifying selection, but two specific amino acid positions showed significant signals of positive selection. These positions showed divergence between southern and northern regions, and we suggest that they are functionally involved in the climatic adaptation of larval development. Using phenotypic data from a common garden experiment, we found evidence for specific C/EBP-1 alleles being correlated with larval development time, suggesting a functional role in adaptation of larval development to large-scale climatic variation.


Assuntos
Variação Genética , Geografia , Ranidae/crescimento & desenvolvimento , Ranidae/genética , Seleção Genética , Fatores de Transcrição/metabolismo , Alelos , Animais , Códon/genética , Frequência do Gene/genética , Estudos de Associação Genética , Larva/genética , Larva/crescimento & desenvolvimento , Modelos Lineares , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
8.
Mol Ecol ; 28(12): 2996-3011, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31134695

RESUMO

Stochastic effects from demographic processes and selection are expected to shape the distribution of genetic variation in spatially heterogeneous environments. As the amount of genetic variation is central for long-term persistence of populations, understanding how these processes affect variation over large-scale geographical gradients is pivotal. We investigated the distribution of neutral and putatively adaptive genetic variation, and reconstructed demographic history in the moor frog (Rana arvalis) using 136 individuals from 15 populations along a 1,700-km latitudinal gradient from northern Germany to northern Sweden. Using double digest restriction-site associated DNA sequencing we obtained 27,590 single nucleotide polymorphisms (SNPs), and identified differentiation outliers and SNPs associated with growing season length. The populations grouped into a southern and a northern cluster, representing two phylogeographical lineages from different post-glacial colonization routes. Hybrid index estimation and demographic model selection showed strong support for a southern and northern lineage and evidence of gene flow between regions located on each side of a contact zone. However, patterns of past gene flow over the contact zone differed between neutral and putatively adaptive SNPs. While neutral nucleotide diversity was higher along the southern than the northern part of the gradient, nucleotide diversity in differentiation outliers showed the opposite pattern, suggesting differences in the relative strength of selection and drift along the gradient. Variation associated with growing season length decreased with latitude along the southern part of the gradient, but not along the northern part where variation was lower, suggesting stronger climate-mediated selection in the north. Outlier SNPs included loci involved in immunity and developmental processes.


Assuntos
Variação Genética/genética , Genética Populacional , Ranidae/genética , Seleção Genética/genética , Alelos , Animais , Genômica , Alemanha , Repetições de Microssatélites/genética , Filogeografia , Polimorfismo de Nucleotídeo Único/genética , Suécia
9.
J Evol Biol ; 32(4): 356-368, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30703260

RESUMO

Although adaptive divergence along environmental gradients has repeatedly been demonstrated, the role of post-glacial colonization routes in determining phenotypic variation along gradients has received little attention. Here, we used a hierarchical QST -FST approach to separate the roles of adaptive and neutral processes in shaping phenotypic variation in moor frog (Rana arvalis) larval life histories along a 1,700 km latitudinal gradient across northern Europe. This species has colonized Scandinavia via two routes with a contact zone in northern Sweden. By using neutral SNP and common garden phenotypic data from 13 populations at two temperatures, we showed that most of the variation along the gradient occurred between the two colonizing lineages. We found little phenotypic divergence within the lineages; however, all phenotypic traits were strongly diverged between the southern and northern colonization routes, with higher growth and development rates and larger body size in the north. The QST estimates between the colonization routes were four times higher than FST , indicating a prominent role for natural selection. QST within the colonization routes did not generally differ from FST , but we found temperature-dependent adaptive divergence close to the contact zone. These results indicate that lineage-specific variation can account for much of the adaptive divergence along a latitudinal gradient.


Assuntos
Evolução Biológica , Polimorfismo de Nucleotídeo Único/genética , Ranidae/classificação , Ranidae/genética , Migração Animal , Animais , Genética Populacional , Larva , Países Escandinavos e Nórdicos , Temperatura
10.
BMC Evol Biol ; 17(1): 189, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806900

RESUMO

BACKGROUND: Past events like fluctuations in population size and post-glacial colonization processes may influence the relative importance of genetic drift, migration and selection when determining the present day patterns of genetic variation. We disentangle how drift, selection and migration shape neutral and adaptive genetic variation in 12 moor frog populations along a 1700 km latitudinal gradient. We studied genetic differentiation and variation at a MHC exon II locus and a set of 18 microsatellites. RESULTS: Using outlier analyses, we identified the MHC II exon 2 (corresponding to the ß-2 domain) locus and one microsatellite locus (RCO8640) to be subject to diversifying selection, while five microsatellite loci showed signals of stabilizing selection among populations. STRUCTURE and DAPC analyses on the neutral microsatellites assigned populations to a northern and a southern cluster, reflecting two different post-glacial colonization routes found in previous studies. Genetic variation overall was lower in the northern cluster. The signature of selection on MHC exon II was weaker in the northern cluster, possibly as a consequence of smaller and more fragmented populations. CONCLUSION: Our results show that historical demographic processes combined with selection and drift have led to a complex pattern of differentiation along the gradient where some loci are more divergent among populations than predicted from drift expectations due to diversifying selection, while other loci are more uniform among populations due to stabilizing selection. Importantly, both overall and MHC genetic variation are lower at northern latitudes. Due to lower evolutionary potential, the low genetic variation in northern populations may increase the risk of extinction when confronted with emerging pathogens and climate change.


Assuntos
Alelos , Anfíbios/genética , Migração Animal/fisiologia , Deriva Genética , Genética Populacional , Geografia , Seleção Genética , Animais , Mudança Climática , Éxons/genética , Loci Gênicos , Variação Genética , Heterozigoto , Antígenos de Histocompatibilidade Classe II/genética , Repetições de Microssatélites/genética , Densidade Demográfica
11.
BMC Evol Biol ; 16(1): 209, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733114

RESUMO

BACKGROUND: Within-generational plasticity (WGP) and transgenerational plasticity (TGP) are mechanisms allowing rapid adaptive responses to fluctuating environments without genetic change. These forms of plasticity have often been viewed as independent processes. Recent evidence suggests that WGP is altered by the environmental conditions experienced by previous generations (i.e., TGP). In the context of inducible defenses, one of the most studied cases of plasticity, the WGP x TGP interaction has been poorly investigated. RESULTS: We provide evidence that TGP can alter the reaction norms of inducible defenses in a freshwater snail. The WGP x TGP interaction patterns are trait-specific and lead to decreased slope of reaction norms (behaviour and shell thickness). Offspring from induced parents showed a higher predator avoidance behaviour and a thicker shell than snails from non-induced parents in no predator-cue environment while they reached similar defenses in predator-cue environment. The WGP x TGP interaction further lead to a switch from a plastic towards a constitutive expression of defenses for shell dimensions (flat reaction norm). CONCLUSIONS: WGP-alteration by TGP may shape the adaptive responses to environmental change and then has a substantial importance to understand the evolution of plasticity.


Assuntos
Cadeia Alimentar , Caramujos/fisiologia , Adaptação Biológica , Animais , Astacoidea , Evolução Biológica , Meio Ambiente , Peixes , Água Doce , Caramujos/anatomia & histologia , Caramujos/genética , Comportamento Social
12.
Dis Aquat Organ ; 104(3): 215-24, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23759559

RESUMO

Amphibians are the vertebrate group most affected by global change. Their highly permeable skin is involved in maintaining homeostasis (e.g. water and electrolyte equilibrium), which makes them particularly vulnerable to climate warming and skin pathogens. This study focused on the impacts of both desiccation (as a potential consequence of climate warming) and exposure to Batrachochytrium dendrobatidis (Bd), an emergent skin pathogen of amphibians. Bd causes chytridiomycosis, a lethal skin disease of amphibians, and is responsible for mass mortality events in several regions of the world. Because Bd colonizes the superficial layers of the epidermis, it is assumed to affect water transfer across the skin. We investigated the behavioural postures of the palmate newt Lissotriton helveticus expressed in response to desiccation and their influence on transepidermal water loss (TEWL) rate. We also investigated the effects of repeated 24 h exposure to Bd (i.e. every 4 d for 16 d) on the TEWL and ventral water absorption (VWA) rates of these newts. Our results suggest an efficient behavioural water-conserving mechanism, i.e. an 'S'-shaped posture associated with a restricted activity rate, not affected by repeated exposure to Bd. Similarly, TEWL was not significantly affected in exposed newts. VWA was significantly reduced after just 24 h exposure to Bd without modification until the end of the experiments. Our results suggest that Bd could rapidly inhibit rehydration of L. helveticus through fungal toxins and disrupt an essential function for survival.


Assuntos
Quitridiomicetos , Micoses/veterinária , Urodelos/microbiologia , Água/metabolismo , Animais , Desidratação/veterinária , Micoses/microbiologia , Urodelos/fisiologia
13.
Evolution ; 66(6): 1942-52, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22671558

RESUMO

Populations that have suffered from genetic erosion are expected to exhibit reduced average trait values or decreased variation in adaptive traits when experiencing periodic or emergent stressors such as infectious disease. Genetic erosion may consequentially modify the ability of a potential host population to cope with infectious disease emergence. We experimentally investigate this relationship between genetic variability and host response to exposure to an infectious agent both in terms of susceptibility to infection and indirect parasite-mediated responses that also impact fitness. We hypothesized that the deleterious consequences of exposure to the pathogen (Batrachochytrium dendrobatidis) would be more severe for tadpoles descended from European treefrog (Hyla arborea) populations lacking genetic variability. Although all exposed tadpoles lacked detectable infection, we detected this relationship for some indirect host responses, predominantly in genetically depleted animals, as well as an interaction between genetic variability and pathogen dose on life span during the postmetamorphic period. Lack of infection and a decreased mass and postmetamorphic life span in low genetic diversity tadpoles lead us to conclude that genetic erosion, while not affecting the ability to mount effective resistance strategies, also erodes the capacity to invest in resistance, increased tadpole growth rate, and metamorphosis relatively simultaneously.


Assuntos
Quitridiomicetos/patogenicidade , Interações Hospedeiro-Patógeno , Ranidae/genética , Animais , Ranidae/microbiologia
14.
J Exp Biol ; 215(Pt 5): 863-9, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22323209

RESUMO

Mitochondria are known to play a central role in life history processes, being the main source of reactive oxygen species (ROS), which promote oxidative constraint. Surprisingly, although the main role of the mitochondria is to produce ATP, the plasticity of mitochondrial ATP generation has received little attention in life history studies. Yet, mitochondrial energy transduction represents the physiological link between environmental resources and energy allocated to animal performance. Studying both facets of mitochondrial functioning (ATP and ROS production) would allow better understanding of the proximate mechanisms underlying life history. We have experimentally modulated the mitochondrial capacity to generate ROS and ATP during larval development of Rana temporaria tadpoles, via chronic exposure (34 days) to a mitochondrial uncoupler (2,4-dinitrophenol, dNP). The aim was to better understand the impact of mitochondrial uncoupling on both responses in terms of oxidative balance, energy input (oxygen and feeding consumption) and energy output (growth and development of the tadpole). Exposure to 2,4-dNP reduced mitochondrial ROS generation, total antioxidant defences and oxidative damage in treated tadpoles compared with controls. Despite the beneficial effect of dNP on oxidative status, development and growth rates of treated tadpoles were lower than those in the control group. Treatment of tadpoles with 2,4-dNP promoted a mild mitochondrial uncoupling and enhanced metabolic rate. These tadpoles did not increase their food consumption, and thus failed to compensate for the energy loss elicited by the decrease in the efficiency of ATP production. These data suggest that the cost of ATP production, rather than the oxidative balance, is the parameter that constrains growth/development of tadpoles, highlighting the central role of energy transduction in larval performance.


Assuntos
Mitocôndrias/metabolismo , Rana temporaria/crescimento & desenvolvimento , Rana temporaria/metabolismo , Espécies Reativas de Oxigênio/metabolismo , 2,4-Dinitrofenol/metabolismo , Trifosfato de Adenosina , Proteínas de Anfíbios/metabolismo , Animais , Citocromos c/metabolismo , Metabolismo Energético , Ácido Láctico/metabolismo , Oxirredução
15.
PLoS Biol ; 9(5): e1001062, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21629756

RESUMO

Non-recombining sex chromosomes are expected to undergo evolutionary decay, ending up genetically degenerated, as has happened in birds and mammals. Why are then sex chromosomes so often homomorphic in cold-blooded vertebrates? One possible explanation is a high rate of turnover events, replacing master sex-determining genes by new ones on other chromosomes. An alternative is that X-Y similarity is maintained by occasional recombination events, occurring in sex-reversed XY females. Based on mitochondrial and nuclear gene sequences, we estimated the divergence times between European tree frogs (Hyla arborea, H. intermedia, and H. molleri) to the upper Miocene, about 5.4-7.1 million years ago. Sibship analyses of microsatellite polymorphisms revealed that all three species have the same pair of sex chromosomes, with complete absence of X-Y recombination in males. Despite this, sequences of sex-linked loci show no divergence between the X and Y chromosomes. In the phylogeny, the X and Y alleles cluster according to species, not in groups of gametologs. We conclude that sex-chromosome homomorphy in these tree frogs does not result from a recent turnover but is maintained over evolutionary timescales by occasional X-Y recombination. Seemingly young sex chromosomes may thus carry old-established sex-determining genes, a result at odds with the view that sex chromosomes necessarily decay until they are replaced. This raises intriguing perspectives regarding the evolutionary dynamics of sexually antagonistic genes and the mechanisms that control X-Y recombination.


Assuntos
Anuros/genética , Cromossomo X/genética , Cromossomo Y/genética , Animais , Feminino , Frequência do Gene , Genes Ligados ao Cromossomo X , Genes Ligados ao Cromossomo Y , Ligação Genética , Marcadores Genéticos , Especiação Genética , Funções Verossimilhança , Masculino , Modelos Genéticos , Filogenia , Recombinação Genética , Processos de Determinação Sexual
16.
Conserv Biol ; 24(6): 1596-605, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20666803

RESUMO

Connectivity among populations plays a crucial role in maintaining genetic variation at a local scale, especially in small populations affected strongly by genetic drift. The negative consequences of population disconnection on allelic richness and gene diversity (heterozygosity) are well recognized and empirically established. It is not well recognized, however, that a sudden drop in local effective population size induced by such disconnection produces a temporary disequilibrium in allelic frequency distributions that is akin to the genetic signature of a demographic bottleneck. To document this effect, we used individual-based simulations and empirical data on allelic richness and gene diversity in six pairs of isolated versus well-connected (core) populations of European tree frogs. In our simulations, population disconnection depressed allelic richness more than heterozygosity and thus resulted in a temporary excess in gene diversity relative to mutation drift equilibrium (i.e., signature of a genetic bottleneck). We observed a similar excess in gene diversity in isolated populations of tree frogs. Our results show that population disconnection can create a genetic bottleneck in the absence of demographic collapse.


Assuntos
Anuros/genética , Simulação por Computador , Variação Genética , Animais , Anuros/fisiologia , Frequência do Gene , Deriva Genética , Densidade Demográfica , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA