Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Cell Rep ; 43(8): 114518, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39028623

RESUMO

Soluble HIV-1 envelope (Env) trimers may serve as effective vaccine immunogens. The widely utilized SOSIP trimers have been paramount for structural studies, but the disulfide bond they feature between gp120 and gp41 constrains intersubunit mobility and may alter antigenicity. Here, we report an alternative strategy to generate stabilized soluble Env trimers free of covalent gp120-gp41 bonds. Stabilization was achieved by introducing an intrasubunit disulfide bond between the inner and outer domains of gp120, defined as interdomain lock (IDL). Correctly folded IDL trimers displaying a native-like antigenic profile were produced for HIV-1 Envs of different clades. Importantly, the IDL design abrogated CD4 binding while not affecting recognition by potent neutralizing antibodies to the CD4-binding site. By cryoelectron microscopy, IDL trimers were shown to adopt a closed prefusion configuration, while single-molecule fluorescence resonance energy transfer documented a high prevalence of native-like conformation. Thus, IDL trimers may be promising candidates as vaccine immunogens.

2.
Proc Natl Acad Sci U S A ; 120(29): e2305896120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428933

RESUMO

Vaccines have played a fundamental role in the control of infectious diseases. We previously developed a messenger RNA (mRNA) vaccine against HIV-1 that forms virus-like particles (VLPs) through coexpression of the viral envelope with Gag. Here, we applied the same principle to the design of a VLP-forming mRNA vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To promote cognate interaction with simian immunodeficiency virus (SIV) Gag, we engineered different chimeric proteins encompassing the ectodomain and the transmembrane region of the SARS-CoV-2 Spike protein from the Wuhan-Hu-1 strain fused to the gp41 cytoplasmic tail of either HIV-1 (strain WITO) or SIV (strain mac239) with or without a partial truncation at amino acid 745 to enhance membrane expression. Upon cotransfection with SIV gag mRNA, the Spike-SIVCT.745 (SSt) chimera yielded the highest level of cell-surface expression and extracellular VLP release. Immunization of BALB/c mice with SSt+gag mRNA at 0, 4, and 16 wk induced higher titers of Spike-binding and autologous neutralizing antibodies at all time points compared to SSt mRNA alone. Furthermore, mice immunized with SSt+gag mRNA developed neutralizing antibodies effective against different variants of concern. These data demonstrate that the Gag/VLP mRNA platform can be successfully applied to vaccines against different agents for the prevention of infectious diseases of global relevance.


Assuntos
COVID-19 , Vírus da Imunodeficiência Símia , Humanos , Animais , Camundongos , Vacinas contra COVID-19/genética , Anticorpos Antivirais , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética , Vírus da Imunodeficiência Símia/genética
4.
MAbs ; 15(1): 2223350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37345226

RESUMO

The amino-acid composition of the immunoglobulin variable region has been observed to impact antibody pharmacokinetics (PK). Here, we sought to improve the PK of the broad HIV-1-neutralizing VRC01-class antibodies, VRC07-523LS and N6LS, by reducing the net positive charge in their variable domains. We used a structure-guided approach to generate a panel of antibody variants incorporating select Arg or Lys substituted to Asp, Gln, Glu, or Ser. The engineered variants exhibited reduced affinity to heparin, reduced polyreactivity, and improved PK in human FcRn-transgenic mice. One variant, VRC07-523LS.v34, with three charge substitutions, had an observed in vivo half-life and an estimated human half-life of 10.8 and 60 days, respectively (versus 5.4 and 38 days for VRC07-523LS) and retained functionality, neutralizing 92% of a 208-strain panel at a geometric mean IC80 <1 µg/mL. Another variant, N6LS.C49, with two charge substitutions, had an observed in vivo half-life and an estimated human half-life of 14.5 and 80 days (versus 9.0 and 44 days for N6LS) and neutralized ~80% of 208 strains at a geometric mean IC80 <1 µg/mL. Since Arg and Lys residues are prevalent in human antibodies, we propose substitution of select Arg or Lys with Asp, Gln, Glu, or Ser in the framework region as a general means to improve PK of therapeutic antibodies.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Camundongos , Animais , Anticorpos Anti-HIV , Anticorpos Amplamente Neutralizantes , Camundongos Transgênicos , Infecções por HIV/tratamento farmacológico , Anticorpos Neutralizantes
5.
PLoS Pathog ; 19(6): e1011057, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352333

RESUMO

The pediatric live-attenuated bovine/human parainfluenza virus type 3 (B/HPIV3)-vectored vaccine expressing the prefusion-stabilized SARS-CoV-2 spike (S) protein (B/HPIV3/S-2P) was previously evaluated in vitro and in hamsters. To improve its immunogenicity, we generated B/HPIV3/S-6P, expressing S further stabilized with 6 proline mutations (S-6P). Intranasal immunization of hamsters with B/HPIV3/S-6P reproducibly elicited significantly higher serum anti-S IgA/IgG titers than B/HPIV3/S-2P; hamster sera efficiently neutralized variants of concern (VoCs), including Omicron variants. B/HPIV3/S-2P and B/HPIV3/S-6P immunization protected hamsters against weight loss and lung inflammation following SARS-CoV-2 challenge with the vaccine-matched strain WA1/2020 or VoCs B.1.1.7/Alpha or B.1.351/Beta and induced near-sterilizing immunity. Three weeks post-challenge, B/HPIV3/S-2P- and B/HPIV3/S-6P-immunized hamsters exhibited a robust anamnestic serum antibody response with increased neutralizing potency to VoCs, including Omicron sublineages. B/HPIV3/S-6P primed for stronger anamnestic antibody responses after challenge with WA1/2020 than B/HPIV3/S-2P. B/HPIV3/S-6P will be evaluated as an intranasal vaccine to protect infants against both HPIV3 and SARS-CoV-2.


Assuntos
COVID-19 , Infecções por Paramyxoviridae , Cricetinae , Humanos , Animais , Bovinos , Criança , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais , Proteínas Virais de Fusão , Vacinas Atenuadas , COVID-19/prevenção & controle , Vírus da Parainfluenza 3 Humana , Anticorpos Neutralizantes
7.
bioRxiv ; 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36561185

RESUMO

The pediatric live-attenuated bovine/human parainfluenza virus type 3 (B/HPIV3)-vectored vaccine expressing the prefusion-stabilized SARS-CoV-2 spike (S) protein (B/HPIV3/S-2P) was previously evaluated in vitro and in hamsters. To improve its immunogenicity, we generated B/HPIV3/S-6P, expressing S further stabilized with 6 proline mutations (S-6P). Intranasal immunization of hamsters with B/HPIV3/S-6P reproducibly elicited significantly higher serum anti-S IgA/IgG titers than B/HPIV3/S-2P; hamster sera efficiently neutralized variants of concern (VoCs), including Omicron variants. B/HPIV3/S-2P and B/HPIV3/S-6P immunization protected hamsters against weight loss and lung inflammation following SARS-CoV-2 challenge with the vaccine-matched strain WA1/2020 or VoCs B.1.1.7/Alpha or B.1.351/Beta and induced near-sterilizing immunity. Three weeks post-challenge, B/HPIV3/S-2P- and B/HPIV3/S-6P-immunized hamsters exhibited a robust anamnestic serum antibody response with increased neutralizing potency to VoCs, including Omicron sublineages. B/HPIV3/S-6P primed for stronger anamnestic antibody responses after challenge with WA1/2020 than B/HPIV3/S-2P. B/HPIV3/S-6P will be evaluated as an intranasal vaccine to protect infants against both HPIV3 and SARS-CoV-2. AUTHOR SUMMARY: SARS-CoV-2 infects and causes disease in all age groups. While injectable SARS-CoV-2 vaccines are effective against severe COVID-19, they do not fully prevent SARS-CoV-2 replication and transmission. This study describes the preclinical comparison in hamsters of B/HPIV3/S-2P and B/HPIV3/S-6P, live-attenuated pediatric vector vaccine candidates expressing the "2P" prefusion stabilized version of the SARS-CoV-2 spike protein, or the further-stabilized "6P" version. B/HPIV3/S-6P induced significantly stronger anti-S serum IgA and IgG responses than B/HPIV3/S-2P. A single intranasal immunization with B/HPIV3/S-6P elicited broad systemic antibody responses in hamsters that efficiently neutralized the vaccine-matched isolate as well as variants of concern, including Omicron. B/HPIV3/S-6P immunization induced near-complete airway protection against the vaccine-matched SARS-CoV-2 isolate as well as two variants. Furthermore, following SARS-CoV-2 challenge, immunized hamsters exhibited strong anamnestic serum antibody responses. Based on these data, B/HPIV3/S-6P will be further evaluated in a phase I study.

8.
Proc Natl Acad Sci U S A ; 119(47): e2213361119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36322776

RESUMO

Severe COVID-19 is characterized by a prothrombotic state associated with thrombocytopenia, with microvascular thrombosis being almost invariably present in the lung and other organs at postmortem examination. We evaluated the presence of antibodies to platelet factor 4 (PF4)-polyanion complexes using a clinically validated immunoassay in 100 hospitalized patients with COVID-19 with moderate or severe disease (World Health Organization score, 4 to 10), 25 patients with acute COVID-19 visiting the emergency department, and 65 convalescent individuals. Anti-PF4 antibodies were detected in 95 of 100 hospitalized patients with COVID-19 (95.0%) irrespective of prior heparin treatment, with a mean optical density value of 0.871 ± 0.405 SD (range, 0.177 to 2.706). In contrast, patients hospitalized for severe acute respiratory disease unrelated to COVID-19 had markedly lower levels of the antibodies. In a high proportion of patients with COVID-19, levels of all three immunoglobulin (Ig) isotypes tested (IgG, IgM, and IgA) were simultaneously elevated. Antibody levels were higher in male than in female patients and higher in African Americans and Hispanics than in White patients. Anti-PF4 antibody levels were correlated with the maximum disease severity score and with significant reductions in circulating platelet counts during hospitalization. In individuals convalescent from COVID-19, the antibody levels returned to near-normal values. Sera from patients with COVID-19 induced higher levels of platelet activation than did sera from healthy blood donors, but the results were not correlated with the levels of anti-PF4 antibodies. These results demonstrate that the vast majority of patients with severe COVID-19 develop anti-PF4 antibodies, which may play a role in the clinical complications of COVID-19.


Assuntos
COVID-19 , Trombocitopenia , Humanos , Masculino , Feminino , Fator Plaquetário 4 , Heparina , Anticorpos , Fatores Imunológicos , Índice de Gravidade de Doença
9.
Cell ; 185(25): 4811-4825.e17, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36423629

RESUMO

Pediatric SARS-CoV-2 vaccines are needed that elicit immunity directly in the airways as well as systemically. Building on pediatric parainfluenza virus vaccines in clinical development, we generated a live-attenuated parainfluenza-virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques. A single intranasal/intratracheal dose of B/HPIV3/S-6P induced strong S-specific airway mucosal immunoglobulin A (IgA) and IgG responses. High levels of S-specific antibodies were also induced in serum, which efficiently neutralized SARS-CoV-2 variants of concern of alpha, beta, and delta lineages, while their ability to neutralize Omicron sub-lineages was lower. Furthermore, B/HPIV3/S-6P induced robust systemic and pulmonary S-specific CD4+ and CD8+ T cell responses, including tissue-resident memory cells in the lungs. Following challenge, SARS-CoV-2 replication was undetectable in airways and lung tissues of immunized macaques. B/HPIV3/S-6P will be evaluated clinically as pediatric intranasal SARS-CoV-2/parainfluenza virus type 3 vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Macaca mulatta , COVID-19/prevenção & controle , SARS-CoV-2/genética
10.
Cell Rep ; 41(5): 111528, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302375

RESUMO

The emergence and global spread of the SARS-CoV-2 Omicron variants, which carry an unprecedented number of mutations, raise serious concerns due to the reduced efficacy of current vaccines and resistance to therapeutic antibodies. Here, we report the generation and characterization of two potent human monoclonal antibodies, NA8 and NE12, against the receptor-binding domain of the SARS-CoV-2 spike protein. NA8 interacts with a highly conserved region and has a breadth of neutralization with picomolar potency against the Beta variant and the Omicron BA.1 and BA.2 sublineages and nanomolar potency against BA.2.12.1 and BA.4. Combination of NA8 and NE12 retains potent neutralizing activity against the major SARS-CoV-2 variants of concern. Cryo-EM analysis provides the structural basis for the broad and complementary neutralizing activity of these two antibodies. We confirm the in vivo protective and therapeutic efficacies of NA8 and NE12 in the hamster model. These results show that broad and potent human antibodies can overcome the continuous immune escape of evolving SARS-CoV-2 variants.


Assuntos
Antineoplásicos Imunológicos , COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/genética , Testes de Neutralização , Anticorpos Antivirais/uso terapêutico , Proteínas do Envelope Viral , Glicoproteínas de Membrana/genética , Anticorpos Neutralizantes/uso terapêutico
11.
bioRxiv ; 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35665011

RESUMO

Pediatric SARS-CoV-2 vaccines are needed that elicit immunity directly in the airways, as well as systemically. Building on pediatric parainfluenza virus vaccines in clinical development, we generated a live-attenuated parainfluenza virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques. A single intranasal/intratracheal dose of B/HPIV3/S-6P induced strong S-specific airway mucosal IgA and IgG responses. High levels of S-specific antibodies were also induced in serum, which efficiently neutralized SARS-CoV-2 variants of concern. Furthermore, B/HPIV3/S-6P induced robust systemic and pulmonary S-specific CD4+ and CD8+ T-cell responses, including tissue-resident memory cells in lungs. Following challenge, SARS-CoV-2 replication was undetectable in airways and lung tissues of immunized macaques. B/HPIV3/S-6P will be evaluated clinically as pediatric intranasal SARS-CoV-2/parainfluenza virus type 3 vaccine.

12.
Retrovirology ; 19(1): 9, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597982

RESUMO

BACKGROUND: P-selectin glycoprotein ligand-1 (PSGL-1/CD162) has been studied extensively for its role in mediating leukocyte rolling through interactions with its cognate receptor, P-selectin. Recently, PSGL-1 was identified as a novel HIV-1 host restriction factor, particularly when expressed at high levels in the HIV envelope. Importantly, while the potent antiviral activity of PSGL-1 has been clearly demonstrated in various complementary model systems, the breadth of PSGL-1 incorporation across genetically diverse viral isolates and clinical isolates has yet to be described. Additionally, the biological activity of virion-incorporated PSGL-1 has also yet to be shown. RESULTS: Herein we assessed the levels of PSGL-1 on viruses produced through transfection with various amounts of PSGL-1 plasmid DNA (0-250 ng), compared to levels of PSGL-1 on viruses produced through infection of T cell lines and primary PBMC. We found that very low levels of PSGL-1 plasmid DNA (< 2.5 ng/well) were necessary to generate virus models that could closely mirror the phenotype of viruses produced via infection of T cells and PBMC. Unique to this study, we show that PSGL-1 is incorporated in a broad range of HIV-1 and SIV isolates and that virions with incorporated PSGL-1 are detectable in plasma from viremic HIV-1-infected individuals, corroborating the relevance of PSGL-1 in natural infection. Additionally, we show that PSGL-1 on viruses can bind its cognate selectin receptors, P-, E-, and L-selectins. Finally, we show viruses with endogenous levels of PSGL-1 can be captured by P-selectin and transferred to HIV-permissive bystander cells, highlighting a novel role for PSGL-1 in HIV-1 infection. Notably, viruses which contained high levels of PSGL-1 were noninfectious in our hands, in line with previous findings reporting the potent antiviral activity of PSGL-1. CONCLUSIONS: Our results indicate that levels of PSGL-1 incorporation into virions can vary widely among model systems tested, and that careful tailoring of plasmid levels is required to recapitulate physiological systems when using pseudovirus models. Taken together, our data suggest that PSGL-1 may play diverse roles in the physiology of HIV-1 infection, particularly due to the functionally active state of PSGL-1 on virion surfaces and the breadth of PSGL-1 incorporation among a wide range of viral isolates.


Assuntos
Infecções por HIV , HIV-1 , Selectina-P , Antivirais/metabolismo , DNA/metabolismo , HIV-1/genética , HIV-1/metabolismo , Humanos , Leucócitos Mononucleares , Glicoproteínas de Membrana , Selectina-P/metabolismo
13.
medRxiv ; 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35043120

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered a devastating global health, social and economic crisis. The RNA nature and broad circulation of this virus facilitate the accumulation of mutations, leading to the continuous emergence of variants of concern with increased transmissibility or pathogenicity 1 . This poses a major challenge to the effectiveness of current vaccines and therapeutic antibodies 1, 2 . Thus, there is an urgent need for effective therapeutic and preventive measures with a broad spectrum of action, especially against variants with an unparalleled number of mutations such as the recently emerged Omicron variant, which is rapidly spreading across the globe 3 . Here, we used combinatorial antibody phage-display libraries from convalescent COVID-19 patients to generate monoclonal antibodies against the receptor-binding domain of the SARS-CoV-2 spike protein with ultrapotent neutralizing activity. One such antibody, NE12, neutralizes an early isolate, the WA-1 strain, as well as the Alpha and Delta variants with half-maximal inhibitory concentrations at picomolar level. A second antibody, NA8, has an unusual breadth of neutralization, with picomolar activity against both the Beta and Omicron variants. The prophylactic and therapeutic efficacy of NE12 and NA8 was confirmed in preclinical studies in the golden Syrian hamster model. Analysis by cryo-EM illustrated the structural basis for the neutralization properties of NE12 and NA8. Potent and broadly neutralizing antibodies against conserved regions of the SARS-CoV-2 spike protein may play a key role against future variants of concern that evade immune control.

14.
Nat Med ; 27(12): 2234-2245, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887575

RESUMO

The development of a protective vaccine remains a top priority for the control of the HIV/AIDS pandemic. Here, we show that a messenger RNA (mRNA) vaccine co-expressing membrane-anchored HIV-1 envelope (Env) and simian immunodeficiency virus (SIV) Gag proteins to generate virus-like particles (VLPs) induces antibodies capable of broad neutralization and reduces the risk of infection in rhesus macaques. In mice, immunization with co-formulated env and gag mRNAs was superior to env mRNA alone in inducing neutralizing antibodies. Macaques were primed with a transmitted-founder clade-B env mRNA lacking the N276 glycan, followed by multiple booster immunizations with glycan-repaired autologous and subsequently bivalent heterologous envs (clades A and C). This regimen was highly immunogenic and elicited neutralizing antibodies against the most prevalent (tier-2) HIV-1 strains accompanied by robust anti-Env CD4+ T cell responses. Vaccinated animals had a 79% per-exposure risk reduction upon repeated low-dose mucosal challenges with heterologous tier-2 simian-human immunodeficiency virus (SHIV AD8). Thus, the multiclade env-gag VLP mRNA platform represents a promising approach for the development of an HIV-1 vaccine.


Assuntos
Anticorpos Neutralizantes/imunologia , Genes env , Genes gag , Anticorpos Anti-HIV/biossíntese , HIV-1/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Animais , Anticorpos Anti-HIV/imunologia , Imunização Secundária , Macaca mulatta , Fatores de Risco , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas de mRNA/administração & dosagem
15.
Viruses ; 13(7)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34372611

RESUMO

The entry of HIV-1 into host cells is initiated by the interaction of the viral envelope (Env) spike with the CD4 receptor. During this process, the spike undergoes a series of conformational changes that eventually lead to the exposure of the fusion peptide located at the N-terminus of the transmembrane glycoprotein, gp41. Recent structural and functional studies have provided important insights into the interaction of Env with CD4 at various stages. However, a fine elucidation of the earliest events of CD4 contact and its immediate effect on the Env conformation remains a challenge for investigation. Here, we summarize the discovery of the quaternary nature of the CD4-binding site in the HIV-1 Env and the role of quaternary contact in the functional interaction with the CD4 receptor. We propose two models for this initial contact based on the current knowledge and discuss how a better understanding of the quaternary interaction may lead to improved immunogens and antibodies targeting the CD4-binding site.


Assuntos
Anticorpos Neutralizantes/metabolismo , Antígenos CD4/metabolismo , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Internalização do Vírus , Sítios de Ligação de Anticorpos , Linhagem Celular , Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína/fisiologia
16.
MAbs ; 13(1): 1946918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34328065

RESUMO

Passive transfer of broadly neutralizing antibodies is showing promise in the treatment and prevention of HIV-1. One class of antibodies, the VRC01 class, appears especially promising. To improve VRC01-class antibodies, we combined structure-based design with a matrix-based approach to generate VRC01-class variants that filled an interfacial cavity, used diverse third-complementarity-determining regions, reduced potential steric clashes, or exploited extended contacts to a neighboring protomer within the envelope trimer. On a 208-strain panel, variant VRC01.23LS neutralized 90% of the panel at a geometric mean IC80 less than 1 µg/ml, and in transgenic mice with human neonatal-Fc receptor, the serum half-life of VRC01.23LS was indistinguishable from that of the parent VRC01LS, which has a half-life of 71 d in humans. A cryo-electron microscopy structure of VRC01.23 Fab in complex with BG505 DS-SOSIP.664 Env trimer determined at 3.4-Å resolution confirmed the structural basis for its ~10-fold improved potency relative to VRC01. Another variant, VRC07-523-F54-LS.v3, neutralized 95% of the 208-isolated panel at a geometric mean IC80 of less than 1 µg/ml, with a half-life comparable to that of the parental VRC07-523LS. Our matrix-based structural approach thus enables the engineering of VRC01 variants for HIV-1 therapy and prevention with improved potency, breadth, and pharmacokinetics.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Infecções por HIV , HIV-1/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/farmacologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Humanos , Camundongos Knockout
17.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33827946

RESUMO

Broadly neutralizing antibodies (bNAbs) are the focus of increasing interest for human immunodeficiency virus type 1 (HIV-1) prevention and treatment. Although several bNAbs are already under clinical evaluation, the development of antibodies with even greater potency and breadth remains a priority. Recently, we reported a novel strategy for improving bNAbs against the CD4-binding site (CD4bs) of gp120 by engraftment of the elongated framework region 3 (FR3) from VRC03, which confers the ability to establish quaternary interactions with a second gp120 protomer. Here, we applied this strategy to a new series of anti-CD4bs bNAbs (N49 lineage) that already possess high potency and breadth. The resultant chimeric antibodies bound the HIV-1 envelope (Env) trimer with a higher affinity than their parental forms. Likewise, their neutralizing capacity against a global panel of HIV-1 Envs was also increased. The introduction of additional modifications further enhanced the neutralization potency. We also tried engrafting the elongated CDR1 of the heavy chain from bNAb 1-18, another highly potent quaternary-binding antibody, onto several VRC01-class bNAbs, but none of them was improved. These findings point to the highly selective requirements for the establishment of quaternary contact with the HIV-1 Env trimer. The improved anti-CD4bs antibodies reported here may provide a helpful complement to current antibody-based protocols for the therapy and prevention of HIV-1 infection.IMPORTANCE Monoclonal antibodies represent one of the most important recent innovations in the fight against infectious diseases. Although potent antibodies can be cloned from infected individuals, various strategies can be employed to improve their activity or pharmacological features. Here, we improved a lineage of very potent antibodies that target the receptor-binding site of HIV-1 by engineering chimeric molecules containing a fragment from a different monoclonal antibody. These engineered antibodies are promising candidates for development of therapeutic or preventive approaches against HIV/AIDS.


Assuntos
Sítios de Ligação de Anticorpos , Anticorpos Amplamente Neutralizantes/imunologia , Antígenos CD4/metabolismo , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Engenharia de Proteínas , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Sítios de Ligação , Sítios de Ligação de Anticorpos/imunologia , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Amplamente Neutralizantes/uso terapêutico , Antígenos CD4/química , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/uso terapêutico , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/prevenção & controle , Infecções por HIV/terapia , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Multimerização Proteica , Subunidades Proteicas/química
18.
mBio ; 12(2)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785631

RESUMO

The human immunodeficiency virus type 1 (HIV-1) envelope trimer maintains a closed, metastable configuration to protect vulnerable epitopes from neutralizing antibodies. Here, we identify key hydrophobic constraints at the trimer apex that function as global stabilizers of the HIV-1 envelope spike configuration. Mutation of individual residues within four hydrophobic clusters that fasten together the V1V2, V3, and C4 domains at the apex of gp120 dramatically increases HIV-1 sensitivity to weak and restricted neutralizing antibodies targeting epitopes that are largely concealed in the prefusion Env spike, consistent with the adoption of a partially open trimer configuration. Conversely, the same mutations decrease the sensitivity to broad and potent neutralizing antibodies that preferentially recognize the closed trimer. Sera from chronically HIV-infected patients neutralize open mutants with enhanced potency, compared to the wild-type virus, suggesting that a large fraction of host-generated antibodies target concealed epitopes. The identification of structural constraints that maintain the HIV-1 envelope in an antibody-protected state may inform the design of a protective vaccine.IMPORTANCE Elucidating the structure and function of the HIV-1 envelope proteins is critical for the design of an effective vaccine. Despite the availability of many high-resolution structures, key functional correlates in the envelope trimer remain undefined. We utilized a combination of structural analysis, in silico energy calculation, mutagenesis, and neutralization profiling to dissect the functional anatomy of the trimer apex, which acts as a global regulator of the HIV-1 spike conformation. We identify four hydrophobic clusters that stabilize the spike in a tightly closed configuration and, thereby, play a critical role in protecting it from the reach of neutralizing antibodies.


Assuntos
HIV-1/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV , Infecções por HIV/virologia , HIV-1/química , HIV-1/imunologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mutação , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
19.
mBio ; 11(6)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203756

RESUMO

Historical studies conducted in chimpanzees gave us the opportunity to investigate the basis for the different severities of liver damage and disease outcome associated with infection with wild-type hepatitis B virus (HBV) versus a precore HBV mutant, HBV/hepatitis D virus (HDV) coinfection, and HDV superinfection. Weekly samples from 9 chimpanzees were studied for immune responses by measuring plasma levels of 29 cytokines in parallel with alanine aminotransferase (ALT) levels and viral kinetics. Comparison of classic acute hepatitis B (AHB) with severe or progressive AHB and HBV/HDV coinfection or superinfection identified distinct cytokine profiles. Classic AHB (mean ALT peak, 362 IU/liter) correlated with an early and significant induction of interferon alpha-2 (IFN-α2), IFN-γ, interleukin-12 p70 (IL-12 p70), and IL-17A. In contrast, these cytokines were virtually undetectable in severe AHB (mean ALT peak, 1,335 IU/liter), characterized by significant elevations of IL-10, tumor necrosis factor alpha (TNF-α), and MIP-1ß. In progressive AHB (mean ALT peak, 166 IU/liter), there was a delayed and lower-magnitude induction of cytokines. The ALT peak was also delayed (mean, 23.5 weeks) compared to those of classic (13.5 weeks) and severe AHB (7.5 weeks). HBV/HDV coinfection correlated with significantly lower levels of IFN-α2, IFN-γ, and IL-17A, associated with the presence of multiple proinflammatory cytokines, including IL-1α, IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-10, and IL-15. Conversely, HDV superinfection induced the highest ALT peak (1,910 IU/liter) and was associated with a general suppression of cytokines. Our data demonstrate that the most severe liver damage, caused by an HBV precore mutant and HDV, correlated with restricted cytokine expression and lack of Th1 response, raising the question of whether these viruses are directly cytopathic.IMPORTANCE Studies performed in chimpanzees at the National Institutes of Health (NIH) demonstrated a significant difference in ALT levels during acute hepatitis of different viral etiologies, with a hierarchy in the extent of liver damage according to the infecting virus: the highest level was in HDV superinfection, followed by infection with a precore HBV mutant, HBV/HDV coinfection, and, lastly, wild-type HBV infection. Our study demonstrates that both the virus and host are important in disease pathogenesis and offers new insights into their roles. We found that distinct cytokine profiles were associated with disease severity and clinical outcome. In particular, resolution of classic acute hepatitis B (AHB) correlated with a predominant Th1 response, whereas HBV/HDV coinfection showed a predominant proinflammatory response. Severe AHB and HDV superinfection showed a restricted cytokine profile and no evidence of Th1 response. The lack of cytokines associated with adaptive T-cell responses toward the precore HBV mutant and HDV superinfection argues in favor of a direct cytopathic effect of these viruses.


Assuntos
Citocinas/metabolismo , Vírus da Hepatite B/imunologia , Hepatite B/virologia , Hepatite D/virologia , Vírus Delta da Hepatite/imunologia , Doença Aguda , Animais , Coinfecção , Modelos Animais de Doenças , Humanos , Estudos Longitudinais , Pan troglodytes , Índice de Gravidade de Doença
20.
J Leukoc Biol ; 108(2): 627-632, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32272507

RESUMO

Over the past decade, a series of observations linking α4ß7, the principal gut-homing integrin, with various aspects of HIV-1 infection have generated considerable interest in the field of HIV-1 research. After the initial report that the major HIV-1 envelope glycoprotein, gp120, can bind to α4ß7, intensive research efforts have been focused on the role of α4ß7 as a key factor in HIV-1 pathogenesis and as a potential target for prevention and treatment. The interaction between α4ß7 and its natural ligand, MAdCAM-1, directs infected CD4+ T cells and HIV-1 virions carrying incorporated α4ß7 to the gut mucosa, which may facilitate HIV-1 seeding and replication in the intestinal compartment during the early stages of infection. In addition, cells that express high levels of α4ß7, such as Th17 cells, represent preferential targets for infection, and their frequency in the circulation was shown to correlate with susceptibility to HIV-1 infection and disease progression. A number of in vivo studies in nonhuman primates have investigated whether blockage of α4ß7 may affect SIV transmission and pathogenesis. Administration of a primatized anti-α4ß7 antibody that blocks MAdCAM-1 binding to α4ß7 was reported to reduce SIV mucosal transmission in rhesus macaques. However, the mechanism responsible for such a protective effect is still undefined, and conflicting results have been reported on the effects of the same antibody, in combination with ART, during the early chronic phase of SIV infection. Thus, despite a series of tantalizing results accrued over the past decade, the jury is still out on the role of α4ß7 in HIV-1 infection.


Assuntos
Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Integrinas/metabolismo , Animais , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Integrinas/genética , Ligação Proteica , Receptores Virais/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA