Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Front Immunol ; 15: 1329846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529279

RESUMO

Understanding adaptive immunity against SARS-CoV-2 is a major requisite for the development of effective vaccines and treatments for COVID-19. CD4+ T cells play an integral role in this process primarily by generating antiviral cytokines and providing help to antibody-producing B cells. To empower detailed studies of SARS-CoV-2-specific CD4+ T cell responses in mouse models, we comprehensively mapped I-Ab-restricted epitopes for the spike and nucleocapsid proteins of the BA.1 variant of concern via IFNγ ELISpot assay. This was followed by the generation of corresponding peptide:MHCII tetramer reagents to directly stain epitope-specific T cells. Using this rigorous validation strategy, we identified 6 immunogenic epitopes in spike and 3 in nucleocapsid, all of which are conserved in the ancestral Wuhan strain. We also validated a previously identified epitope from Wuhan that is absent in BA.1. These epitopes and tetramers will be invaluable tools for SARS-CoV-2 antigen-specific CD4+ T cell studies in mice.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Linfócitos T CD4-Positivos , Epitopos de Linfócito T , Nucleocapsídeo/química , Peptídeos/química , SARS-CoV-2/química , Antígenos de Histocompatibilidade Classe II/química , Glicoproteína da Espícula de Coronavírus/química
2.
Nat Immunol ; 24(12): 2091-2107, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945820

RESUMO

Regulatory T (Treg) cell modulation of adaptive immunity and tissue homeostasis is well described; however, less is known about Treg cell-mediated regulation of the innate immune response. Here we show that deletion of ST2, the receptor for interleukin (IL)-33, on Treg cells increased granulocyte influx into the lung and increased cytokine production by innate lymphoid and γδ T cells without alteration of adaptive immunity to influenza. IL-33 induced high levels of the interleukin-1 receptor antagonist (IL-1Ra) in ST2+ Treg cells and deletion of IL-1Ra in Treg cells increased granulocyte influx into the lung. Treg cell-specific deletion of ST2 or IL-1Ra improved survival to influenza, which was dependent on IL-1. Adventitial fibroblasts in the lung expressed high levels of the IL-1 receptor and their chemokine production was suppressed by Treg cell-produced IL-1Ra. Thus, we define a new pathway where IL-33-induced IL-1Ra production by tissue Treg cells suppresses IL-1-mediated innate immune responses to respiratory viral infection.


Assuntos
Influenza Humana , Linfócitos T Reguladores , Humanos , Imunidade Inata , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/metabolismo , Linfócitos/metabolismo , Animais , Camundongos
3.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014059

RESUMO

Understanding adaptive immunity against SARS-CoV-2 is a major requisite for the development of effective vaccines and treatments for COVID-19. CD4+ T cells play an integral role in this process primarily by generating antiviral cytokines and providing help to antibody-producing B cells. To empower detailed studies of SARS-CoV-2-specific CD4+ T cell responses in mouse models, we comprehensively mapped I-Ab-restricted epitopes for the spike and nucleocapsid proteins of the BA.1 variant of concern via IFNγ ELISpot assay. This was followed by the generation of corresponding peptide:MHCII tetramer reagents to directly stain epitope-specific T cells. Using this rigorous validation strategy, we identified 6 reliably immunogenic epitopes in spike and 3 in nucleocapsid, all of which are conserved in the ancestral Wuhan strain. We also validated a previously identified epitope from Wuhan that is absent in BA.1. These epitopes and tetramers will be invaluable tools for SARS-CoV-2 antigen-specific CD4+ T cell studies in mice.

4.
J Autoimmun ; 140: 103090, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572540

RESUMO

CXCL10 is an IFNγ-inducible chemokine implicated in the pathogenesis of type 1 diabetes. T-cells attracted to pancreatic islets produce IFNγ, but it is unclear what attracts the first IFNγ -producing T-cells in islets. Gut dysbiosis following administration of pathobionts induced CXCL10 expression in pancreatic islets of healthy non-diabetes-prone (C57BL/6) mice and depended on TLR4-signaling, and in non-obese diabetic (NOD) mice, gut dysbiosis induced also CXCR3 chemokine receptor in IGRP-reactive islet-specific T-cells in pancreatic lymph node. In amounts typical to low-grade endotoxemia, bacterial lipopolysaccharide induced CXCL10 production in isolated islets of wild type and RAG1 or IFNG-receptor-deficient but not type-I-IFN-receptor-deficient NOD mice, dissociating lipopolysaccharide-induced CXCL10 production from T-cells and IFNγ. Although mostly myeloid-cell dependent, also ß-cells showed activation of innate immune signaling pathways and Cxcl10 expression in response to lipopolysaccharide indicating their independent sensitivity to dysbiosis. Thus, CXCL10 induction in response to low levels of lipopolysaccharide may allow islet-specific T-cells imprinted in pancreatic lymph node to enter in healthy islets independently of IFN-g, and thus link gut dysbiosis to early islet-autoimmunity via dysbiosis-associated low-grade endotoxemia.

5.
Sci Immunol ; 8(83): eabq6352, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37146132

RESUMO

Asthma is a chronic disease most commonly associated with allergy and type 2 inflammation. However, the mechanisms that link airway inflammation to the structural changes that define asthma are incompletely understood. Using a human model of allergen-induced asthma exacerbation, we compared the lower airway mucosa in allergic asthmatics and allergic non-asthmatic controls using single-cell RNA sequencing. In response to allergen, the asthmatic airway epithelium was highly dynamic and up-regulated genes involved in matrix degradation, mucus metaplasia, and glycolysis while failing to induce injury-repair and antioxidant pathways observed in controls. IL9-expressing pathogenic TH2 cells were specific to asthmatic airways and were only observed after allergen challenge. Additionally, conventional type 2 dendritic cells (DC2 that express CD1C) and CCR2-expressing monocyte-derived cells (MCs) were uniquely enriched in asthmatics after allergen, with up-regulation of genes that sustain type 2 inflammation and promote pathologic airway remodeling. In contrast, allergic controls were enriched for macrophage-like MCs that up-regulated tissue repair programs after allergen challenge, suggesting that these populations may protect against asthmatic airway remodeling. Cellular interaction analyses revealed a TH2-mononuclear phagocyte-basal cell interactome unique to asthmatics. These pathogenic cellular circuits were characterized by type 2 programming of immune and structural cells and additional pathways that may sustain and amplify type 2 signals, including TNF family signaling, altered cellular metabolism, failure to engage antioxidant responses, and loss of growth factor signaling. Our findings therefore suggest that pathogenic effector circuits and the absence of proresolution programs drive structural airway disease in response to type 2 inflammation.


Assuntos
Asma , Hipersensibilidade , Humanos , Antioxidantes , Asma/genética , Alérgenos , Inflamação
6.
Sci Immunol ; 7(73): eabl9464, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35857584

RESUMO

CD4+ T cells are central to long-term immunity against viruses through the functions of T helper 1 (TH1) and T follicular helper (TFH) cell subsets. To better understand the role of these subsets in coronavirus disease 2019 (COVID-19) immunity, we conducted a longitudinal study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific CD4+ T cell and antibody responses in convalescent individuals who seroconverted during the first wave of the pandemic in Boston, MA, USA, across a range of COVID-19 disease severities. Analyses of spike (S) and nucleocapsid (N) epitope-specific CD4+ T cells using peptide and major histocompatibility complex class II (pMHCII) tetramers demonstrated expanded populations of T cells recognizing the different SARS-CoV-2 epitopes in most individuals compared with prepandemic controls. Individuals who experienced a milder disease course not requiring hospitalization had a greater percentage of circulating TFH (cTFH) and TH1 cells among SARS-CoV-2-specific cells. Analysis of SARS-CoV-2-specific CD4+ T cells responses in a subset of individuals with sustained anti-S antibody responses after viral clearance also revealed an increased proportion of memory cTFH cells. Our findings indicate that efficient early disease control also predicts favorable long-term adaptive immunity.


Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T CD4-Positivos , Epitopos , Humanos , Estudos Longitudinais , Células T de Memória , Índice de Gravidade de Doença
7.
J Immunol ; 208(4): 955-967, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35082161

RESUMO

Deficiency in the clearance of cellular debris is a major pathogenic factor in the emergence of autoimmune diseases. We previously demonstrated that mice deficient for scavenger receptor class F member 1 (SCARF1) develop a lupus-like autoimmune disease with symptoms similar to human systemic lupus erythematosus (SLE), including a pronounced accumulation of apoptotic cells (ACs). Therefore, we hypothesized that SCARF1 will be important for clearance of ACs and maintenance of self-tolerance in humans, and that dysregulation of this process could contribute to SLE. In this article, we show that SCARF1 is highly expressed on phagocytic cells, where it functions as an efferocytosis receptor. In healthy individuals, we discovered that engagement of SCARF1 by ACs on BDCA1+ dendritic cells initiates an IL-10 anti-inflammatory response mediated by the phosphorylation of STAT1 and STAT3. Unexpectedly, there was no significant difference in SCARF1 expression in samples of patients with SLE compared with healthy donor samples. However, we detected anti-SCARF1 autoantibodies in 26% of patients with SLE, which was associated with dsDNA Ab positivity. Furthermore, our data show a direct correlation of the levels of anti-SCARF1 in the serum and defects in the removal of ACs. Depletion of Ig restores efferocytosis in SLE serum, suggesting that defects in the removal of ACs are partially mediated by SCARF1 pathogenic autoantibodies. Our data demonstrate that human SCARF1 is an AC receptor in dendritic cells and plays a role in maintaining tolerance and homeostasis.


Assuntos
Autoanticorpos/imunologia , Imunomodulação , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Fagocitose/imunologia , Receptores Depuradores Classe F/genética , Animais , Autoanticorpos/sangue , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunomodulação/genética , Imunofenotipagem , Lúpus Eritematoso Sistêmico/diagnóstico , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fagócitos/imunologia , Fagócitos/metabolismo , Fosforilação , Fatores de Transcrição STAT/metabolismo , Receptores Depuradores Classe F/imunologia , Receptores Depuradores Classe F/metabolismo
8.
Cancer Cell ; 40(1): 9-11, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34861157

RESUMO

In this issue of Cancer Cell, Li et al. show that histamine released in allergic reactions and from tumor cells attenuates immunotherapy response. Histamine H1-receptor (H1R) signaling induces an M2-like phenotype in tumor-associated macrophages and increases VISTA expression, suppressing CD8+ T cell function. Antihistamines reverse these effects and improve the efficacy of immunotherapy.


Assuntos
Antagonistas dos Receptores Histamínicos/farmacologia , Histamina/metabolismo , Imunoterapia , Neoplasias/tratamento farmacológico , Humanos , Hipersensibilidade/genética , Imunoterapia/métodos , Transdução de Sinais/efeitos dos fármacos
9.
Immunity ; 55(1): 82-97.e8, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34847356

RESUMO

CD8+ T cells responding to chronic infection adapt an altered differentiation program that provides some restraint on pathogen replication yet limits immunopathology. This adaptation is imprinted in stem-like cells and propagated to their progeny. Understanding the molecular control of CD8+ T cell differentiation in chronic infection has important therapeutic implications. Here, we find that the chemokine receptor CXCR3 is highly expressed on viral-specific stem-like CD8+ T cells and that one of its ligands, CXCL10, regulates the persistence and heterogeneity of responding CD8+ T cells in spleens of mice chronically infected with lymphocytic choriomeningitis virus. CXCL10 is produced by inflammatory monocytes and fibroblasts of the splenic red pulp, where it grants stem-like cells access to signals promoting differentiation and limits their exposure to pro-survival niches in the white pulp. Consequently, functional CD8+ T cell responses are greater in Cxcl10-/- mice and are associated with a lower viral set point.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL10/metabolismo , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Monócitos/metabolismo , Receptores CXCR3/metabolismo , Baço/patologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Quimiocina CXCL10/genética , Doença Crônica , Seleção Clonal Mediada por Antígeno , Feminino , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR3/genética
10.
Cell Rep ; 36(6): 109523, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380032

RESUMO

Correct positioning of T cells within infected tissues is critical for T cell activation and pathogen control. Upon tissue entry, effector T cells must efficiently locate antigen-presenting cells (APC) for peripheral activation. We reveal that tissue entry and initial peripheral activation of Th1 effector T cells are tightly linked to perivascular positioning of chemokine-expressing APCs. Dermal inflammation induces tissue-wide de novo generation of discrete perivascular CXCL10+ cell clusters, enriched for CD11c+MHC-II+ monocyte-derived dendritic cells. These chemokine clusters are "hotspots" for both Th1 extravasation and activation in the inflamed skin. CXCR3-dependent Th1 localization to the cluster micro-environment prolongs T-APC interactions and boosts function. Both the frequency and range of these clusters are enhanced via a T helper 1 (Th1)-intrinsic, interferon-gamma (IFNγ)-dependent positive-feedback loop. Thus, the perivascular CXCL10+ clusters act as initial peripheral activation niches, optimizing controlled activation broadly throughout the tissue by coupling Th1 tissue entry with enhanced opportunities for Th1-APC encounter.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Quimiocina CXCL10/metabolismo , Ativação Linfocitária/imunologia , Células Th1/imunologia , Animais , Antígenos/metabolismo , Antígenos CD/metabolismo , Agregação Celular , Orelha/patologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Inflamação/patologia , Interferon gama , Camundongos , Camundongos Transgênicos , Receptores CXCR3/metabolismo , Pele/patologia
11.
Cell ; 184(17): 4512-4530.e22, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34343496

RESUMO

Cytotoxic T lymphocyte (CTL) responses against tumors are maintained by stem-like memory cells that self-renew but also give rise to effector-like cells. The latter gradually lose their anti-tumor activity and acquire an epigenetically fixed, hypofunctional state, leading to tumor tolerance. Here, we show that the conversion of stem-like into effector-like CTLs involves a major chemotactic reprogramming that includes the upregulation of chemokine receptor CXCR6. This receptor positions effector-like CTLs in a discrete perivascular niche of the tumor stroma that is densely occupied by CCR7+ dendritic cells (DCs) expressing the CXCR6 ligand CXCL16. CCR7+ DCs also express and trans-present the survival cytokine interleukin-15 (IL-15). CXCR6 expression and IL-15 trans-presentation are critical for the survival and local expansion of effector-like CTLs in the tumor microenvironment to maximize their anti-tumor activity before progressing to irreversible dysfunction. These observations reveal a cellular and molecular checkpoint that determines the magnitude and outcome of anti-tumor immune responses.


Assuntos
Receptores CXCR6/metabolismo , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral , Animais , Antígeno B7-H1/metabolismo , Comunicação Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Quimiocina CXCL16 , Células Dendríticas/metabolismo , Interleucina-12/metabolismo , Interleucina-15/metabolismo , Ligantes , Linfonodos/metabolismo , Melanoma/imunologia , Melanoma/patologia , Camundongos Endogâmicos C57BL
12.
Immunity ; 54(5): 859-874, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33838745

RESUMO

Chemokines are chemotactic cytokines that regulate the migration of immune cells. Chemokines function as cues for the coordinated recruitment of immune cells into and out of tissue and also guide the spatial organization and cellular interactions of immune cells within tissues. Chemokines are critical in directing immune cell migration necessary to mount and then deliver an effective anti-tumor immune response; however, chemokines also participate in the generation and recruitment of immune cells that contribute to a pro-tumorigenic microenvironment. Here, we review the role of the chemokine system in anti-tumor and pro-tumor immune responses and discuss how malignant cells and the tumor microenvironment regulate the overall chemokine landscape to shape the type and outcome of immune responses to cancer and cancer treatment.


Assuntos
Quimiocinas/imunologia , Imunidade/imunologia , Neoplasias/imunologia , Animais , Carcinogênese/imunologia , Movimento Celular/imunologia , Humanos , Microambiente Tumoral/imunologia
13.
JMA J ; 3(3): 182-192, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33150252

RESUMO

Arrest of circulating leukocytes and subsequent diapedesis is a fundamental component of inflammation. In general, the leukocyte migration cascade is tightly regulated by chemoattractants, such as chemokines. Chemokines, small secreted chemotactic cytokines, as well as their G-protein-coupled seven transmembrane spanning receptors, control the migratory patterns, positioning and cellular interactions of immune cells. Increased levels of chemokines and their receptors are found in the blood and within inflamed tissue in patients with rheumatoid arthritis (RA) and vasculitis. Chemokine ligand-receptor interactions regulate the recruitment of leukocytes into tissue, thus contributing in important ways to the pathogenesis of RA and vasculitis. Despite the fact that blockade of chemokines and chemokine receptors in animal models have yielded promising results, human clinical trials in RA using inhibitors of chemokines and their receptors have generally failed to show clinical benefits. However, recent early phase clinical trials suggest that strategies blocking specific chemokines may have clinical benefits in RA, demonstrating that the chemokine system remains a promising therapeutic target for rheumatic diseases, such as RA and vasuculitis and requires further study.

14.
Cell Rep ; 32(9): 108085, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877667

RESUMO

CD8+ tissue-resident memory T cells (TRM) persist at sites of previous infection, where they provide rapid local protection against pathogen challenge. CD8+ TRM expressing the α1 chain (CD49a) of integrin VLA-1 have been identified within sites of resolved skin infection and in vitiligo lesions. We demonstrate that CD49a is expressed early following T cell activation in vivo, and TGF-ß and IL-12 induce CD49a expression by CD8+ T cells in vitro. Despite this rapid expression, CD49a is not required for the generation of a primary CD8+ T cell response to cutaneous herpes simplex virus (HSV) infection, migration of CD8+ T cells across the epidermal basement membrane, or positioning of TRM within basal epidermis. Rather, CD49a supports CD8+ TRM persistence within skin, regulates epidermal CD8+ TRM dendritic extensions, and increases the frequency of IFN-γ+ CD8+ TRM following local antigen challenge. Our results suggest that CD49a promotes optimal cutaneous CD8+ TRM-mediated immunity.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Integrina alfa1/metabolismo , Linfócitos T/metabolismo , Animais , Feminino
15.
Cell Rep ; 32(11): 108150, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937134

RESUMO

Herpes simplex virus (HSV)-1 encephalitis has significant morbidity partly because of an over-exuberant immune response characterized by leukocyte infiltration into the brain and increased blood-brain barrier (BBB) permeability. Determining the role of specific leukocyte subsets and the factors that mediate their recruitment into the brain is critical to developing targeted immune therapies. In a murine model, we find that the chemokines CXCL1 and CCL2 are induced in the brain following HSV-1 infection. Ccr2 (CCL2 receptor)-deficient mice have reduced monocyte recruitment, uncontrolled viral replication, and increased morbidity. Contrastingly, Cxcr2 (CXCL1 receptor)-deficient mice exhibit markedly reduced neutrophil recruitment, BBB permeability, and morbidity, without influencing viral load. CXCL1 is produced by astrocytes in response to HSV-1 and by astrocytes and neurons in response to IL-1α, and it is the critical ligand required for neutrophil transendothelial migration, which correlates with BBB breakdown. Thus, the CXCL1-CXCR2 axis represents an attractive therapeutic target to limit neutrophil-mediated morbidity in HSV-1 encephalitis.


Assuntos
Astrócitos/metabolismo , Barreira Hematoencefálica/patologia , Quimiocina CXCL1/metabolismo , Encefalite Viral/patologia , Neurônios/metabolismo , Neutrófilos/patologia , Migração Transendotelial e Transepitelial , Aciclovir/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Feminino , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Permeabilidade , Receptores de Interleucina-8B/deficiência , Receptores de Interleucina-8B/metabolismo , Migração Transendotelial e Transepitelial/efeitos dos fármacos
16.
Nat Immunol ; 21(11): 1371-1383, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32989331

RESUMO

Foxp3+ regulatory T (Treg) cells expressing the interleukin (IL)-33 receptor ST2 mediate tissue repair in response to IL-33. Whether Treg cells also respond to the alarmin IL-33 to regulate specific aspects of the immune response is not known. Here we describe an unexpected function of ST2+ Treg cells in suppressing the innate immune response in the lung to environmental allergens without altering the adaptive immune response. Following allergen exposure, ST2+ Treg cells were activated by IL-33 to suppress IL-17-producing γδ T cells. ST2 signaling in Treg cells induced Ebi3, a component of the heterodimeric cytokine IL-35 that was required for Treg cell-mediated suppression of γδ T cells. This response resulted in fewer eosinophil-attracting chemokines and reduced eosinophil recruitment into the lung, which was beneficial to the host in reducing allergen-induced inflammation. Thus, we define a fundamental role for ST2+ Treg cells in the lung as a negative regulator of the early innate γδ T cell response to mucosal injury.


Assuntos
Imunomodulação , Interleucina-33/metabolismo , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Alérgenos/imunologia , Animais , Biomarcadores , Imunofenotipagem , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Camundongos
17.
Ann Transl Med ; 8(14): 862, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32793706

RESUMO

BACKGROUND: Computed tomography (CT) imaging findings in the lungs in the setting of an acute allergic response and following bronchoalveolar lavage (BAL) are not well established. Our goals are to characterize the pulmonary CT findings of acute allergic response in both asthmatic and non-asthmatic subjects and, secondarily, to characterize the pulmonary imaging findings following BAL. METHODS: In this prospective observational (cohort) study, we identified atopic, asthmatic (AA) and atopic, non-asthmatic (ANA) subjects. CT of the chest was performed following BAL and instillation of an allergen (AL) and of an inert diluent (DL). Two radiologists analyzed the CT examinations for airway and parenchymal changes. RESULTS: We had a cohort of 20 atopic subjects (AA=10, ANA=10; F=11, M=9; median age: 23.5 years, range: 18-48 years). Compared to diluent instillation and BAL, allergen instillation resulted in more significant bronchial wall thickening (AL=70%, DL=0%, BAL=0%, P<0.01), consolidations (AL=55%, DL=0%, BAL=15%, P<0.05), and septal thickening (AL=35%, DL=0%, BAL=0%, P<0.01). When present, consolidations tended to be more common in asthmatic subjects compared to non-asthmatics following instillation of the allergen, although this did not reach statistical significance (AA=80% vs. ANA=30%; P=0.07). BAL, on the other hand, resulted in more ground-glass opacities (BAL=15/20, 75% vs. AL=2/20, 10%, vs. DL=0/20, 0%; P<0.01). CONCLUSIONS: Acute allergic response in the lungs can result in significant bronchial wall thickening, septal thickening, and consolidations in those with atopy, particularly those with asthma. Localized ground-glass opacities may be expected following BAL, and care should be taken so as to not misinterpret these as significant pathology.

18.
Trends Immunol ; 41(8): 645-648, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32646595

RESUMO

It has become increasingly clear that the terms used to define memory T cell subsets no longer accurately reflect our understanding of memory T cell biology. Here, we discuss the limitations of our current terminology and propose a new approach for defining memory T cell subsets.


Assuntos
Memória Imunológica , Subpopulações de Linfócitos T , Animais , Humanos , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Terminologia como Assunto
19.
Cell Host Microbe ; 28(1): 104-116.e4, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32485165

RESUMO

Aspergillus fumigatus, a ubiquitous mold, is a common cause of invasive aspergillosis (IA) in immunocompromised patients. Host defense against IA relies on lung-infiltrating neutrophils and monocyte-derived dendritic cells (Mo-DCs). Here, we demonstrate that plasmacytoid dendritic cells (pDCs), which are prototypically antiviral cells, participate in innate immune crosstalk underlying mucosal antifungal immunity. Aspergillus-infected murine Mo-DCs and neutrophils recruited pDCs to the lung by releasing the CXCR3 ligands, CXCL9 and CXCL10, in a Dectin-1 and Card9- and type I and III interferon signaling-dependent manner, respectively. During aspergillosis, circulating pDCs entered the lung in response to CXCR3-dependent signals. Via targeted pDC ablation, we found that pDCs were essential for host defense in the presence of normal neutrophil and Mo-DC numbers. Although interactions between pDC and fungal cells were not detected, pDCs regulated neutrophil NADPH oxidase activity and conidial killing. Thus, pDCs act as positive feedback amplifiers of neutrophil effector activity against inhaled mold conidia.


Assuntos
Aspergilose/imunologia , Células Dendríticas/imunologia , Neutrófilos/imunologia , Receptores CXCR3/imunologia , Esporos Fúngicos/imunologia , Animais , Aspergillus fumigatus/imunologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Quimiocina CXCL10/imunologia , Quimiocina CXCL9/imunologia , Imunidade Inata , Hospedeiro Imunocomprometido , Interferons/imunologia , Lectinas Tipo C/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/imunologia , Receptores CCR2/imunologia , Receptores CXCR3/genética , Transdução de Sinais/imunologia
20.
J Exp Med ; 217(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32579670

RESUMO

Memory CD4+ T helper type 2 (Th2) cells drive allergic asthma, yet the mechanisms whereby tissue-resident memory Th2 (Th2 Trm) cells and circulating memory Th2 cells collaborate in vivo remain unclear. Using a house dust mite (HDM) model of allergic asthma and parabiosis, we demonstrate that Th2 Trm cells and circulating memory Th2 cells perform nonredundant functions. Upon HDM rechallenge, circulating memory Th2 cells trafficked into the lung parenchyma and ignited perivascular inflammation to promote eosinophil and CD4+ T cell recruitment. In contrast, Th2 Trm cells proliferated near airways and induced mucus metaplasia, airway hyperresponsiveness, and airway eosinophil activation. Transcriptional analysis revealed that Th2 Trm cells and circulating memory Th2 cells share a core Th2 gene signature but also exhibit distinct transcriptional profiles. Th2 Trm cells express a tissue-adaptation signature, including genes involved in regulating and interacting with extracellular matrix. Our findings demonstrate that Th2 Trm cells and circulating memory Th2 cells are functionally and transcriptionally distinct subsets with unique roles in promoting allergic airway disease.


Assuntos
Hipersensibilidade/imunologia , Memória Imunológica , Pulmão/imunologia , Pulmão/patologia , Células Th2/imunologia , Alérgenos/imunologia , Animais , Proliferação de Células , Citocinas/biossíntese , Hipersensibilidade/complicações , Hipersensibilidade/patologia , Camundongos Endogâmicos C57BL , Muco/metabolismo , Pneumonia/complicações , Pneumonia/imunologia , Pneumonia/patologia , Pyroglyphidae/imunologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA