Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Reprod Biol ; 24(2): 100890, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723297

RESUMO

Recently we reported expressional alterations in 219 genes and their transcripts in Leydig cell tumors but nowadays there is still a lack of full basic biochemical characteristics of these tumors. The discovery of potential biochemical markers for tumor management from early detection, treatments, and control of therapy results may markedly supplement genetic data. Leydig cell micronodules were obtained from patients with azoospermia who were qualified for testicular biopsy. The biochemistry of Leydig cell tumors was analyzed using histological staining and spectrophotometric measurements of total proteins, carbohydrates, lipids, and nucleic acids. In addition, the levels of calcium (Ca2 +), copper (Cu2 +), zinc (Zn2 +), and selenium (Se2 +) ions were measured. When compared to healthy testis we revealed, for the first time, that in the interstitial tissue with Leydig cell tumors, great amounts of proteins, carbohydrates, lipids, and acids were dislocated from the seminiferous tubules. Measurements of organic compounds showed a decrease (P < 0.05) only in the Cu2 + content in Leydig cell tumors which may be related to their altered biochemical structure. This specific result may be promising for designing further approaches to manage this tumor based on combining morphological and molecular data.


Assuntos
Tumor de Células de Leydig , Neoplasias Testiculares , Humanos , Masculino , Tumor de Células de Leydig/patologia , Tumor de Células de Leydig/metabolismo , Neoplasias Testiculares/patologia , Neoplasias Testiculares/metabolismo , Adulto , Cobre/metabolismo , Testículo/patologia , Testículo/metabolismo , Zinco/metabolismo , Selênio , Cálcio/metabolismo , Azoospermia/metabolismo , Azoospermia/patologia , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia
2.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176130

RESUMO

Central American and Mexican Pinguicula species are characterized by enormous divergence in size and color of flowers and are pollinated by butterflies, flies, bees, and hummingbirds. It is known that floral trichomes are key characters in plant-pollinator interaction. The main aim of our study was to verify our hypothesis that the distribution and diversity of non-glandular and glandular trichomes are related to the pollinator syndromes rather than the phylogenetic relationships. The studied sample consisted of Central American and Mexican species. In our study, we relied on light microscopy and scanning electron microscopy with a phylogenetic perspective based on ITS DNA sequences. The flower morphology of species pollinated by butterflies and hummingbirds was similar in contrast to species pollinated by flies and bees. Species pollinated by butterflies and hummingbirds contained low diversity of non-glandular trichomes, which occurred mostly in the tube and basal part of the spur. Surprisingly, in P. esseriana and P. mesophytica, non-glandular trichomes also occurred at the base of lower lip petals. In the case of species pollinated by flies/bees, we observed a high variety of non-glandular trichomes, which occurred on the surface of corolla petals, in the tube, and at the entrance to the spur. Furthermore, we did not identify any non-glandular trichomes in the spur. The capitate glandular trichomes were of similar morphology in all examined species. There were minor differences in the shape of the trichome head, as well as the length and the number of stalk cells. The distribution and the diversity of non-glandular and glandular trichomes and pollinator syndromes were mapped onto a phylogenetic reconstruction of the genus. Most micromorphological characters appear to be associated more with floral adaptation to pollinators and less with phylogeny.


Assuntos
Borboletas , Lamiales , Abelhas/genética , Animais , Polinização , Tricomas/genética , Filogenia , Flores/genética , Flores/anatomia & histologia , América Central
3.
Anim Reprod Sci ; 226: 106701, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33516138

RESUMO

Rabbit, nutria and chinchilla testes were evaluated to compare testicular cellular senescence. There were no major species-specific differences in structure of either seminiferous tubules or interstitial tissue. There, however, were occasional abnormalities in seminiferous tubule structure with there being multinucleated and exfoliated cells present in rabbit testes. Furthermore, there were seminiferous tubules without a lumen that were filled with premeiotic/meiotic cells in nutria; and tubules with vacuolization with there being no post-meiotic cells in chinchillas. There were no differences in distribution or content of acids, total proteins and polysaccharides in the testis of any of the three species. Results using comparative immunohistochemistry procedures indicated the testes contained a few senescent cells in seminiferous tubules with typical morphology and there was a large number of senescent cells in seminiferous tubules of nutrias and chinchillas that had an abnormal structure (P <0.001). Compared to rabbit testes, in which there was the least number of senescent cells in seminiferous tubules, there was a greater abundance of senescence markers in both nutria and chinchilla testes (P < 0.05; P < 0.001, respectively). Furthermore, there were small abundances of caspase 3 and LC3 in the testes of all species. In chinchilla testes, there was a lesser concentration of cholesterol (P < 0.001) and testosterone compared with the other species. Cellular senescence in testes, therefore, can be assessed by detection of morpho-functional disorders of the testis of the three species evaluated in the present study.


Assuntos
Senescência Celular/fisiologia , Chinchila/fisiologia , Coelhos/fisiologia , Roedores/fisiologia , Testículo/fisiologia , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Biomarcadores , Colesterol/metabolismo , Masculino
4.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287411

RESUMO

Carlina acaulis L. has a long tradition of use in folk medicine. The chemical composition of the roots and green parts of the plant is quite well known. There is the lowest amount of data on the cypsela (fruit) of this plant. In this study, the microscopic structures and the chemical composition of the cypsela were investigated. Preliminary cytochemical studies of the structure of the Carlina acaulis L. cypsela showed the presence of substantial amounts of protein and lipophilic substances. The chemical composition of the cypsela was investigated using spectrophotometry, gas chromatography with mass spectrometry, and high-performance liquid chromatography with spectrophotometric and fluorescence detection. The cypsela has been shown to be a rich source of macro- and microelements, vegetable oil (25%), α-tocopherol (approx. 2 g/kg of oil), protein (approx. 36% seed weight), and chlorogenic acids (approx. 22 g/kg seed weight). It also contains a complex set of volatile compounds. The C. acaulis cypsela is, therefore, a valuable source of nutrients and bioactive substances.


Assuntos
Asteraceae/anatomia & histologia , Asteraceae/química , Fenótipo , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Cromatografia Líquida de Alta Pressão , Flores , Histocitoquímica , Extratos Vegetais/análise , Extratos Vegetais/química , Sementes , Compostos Orgânicos Voláteis/análise
5.
Ann Bot ; 126(6): 1039-1048, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32592586

RESUMO

BACKGROUND AND AIMS: Floral food bodies (including edible trichomes) are a form of floral reward for pollinators. This type of nutritive reward has been recorded in several angiosperm families: Annonaceae, Araceae, Calycanthaceae, Eupomatiaceae, Himantandraceae, Nymphaeaceae, Orchidaceae, Pandanaceae and Winteraceae. Although these bodies are very diverse in their structure, their cells contain food material: starch grains, protein bodies or lipid droplets. In Pinguicula flowers, there are numerous multicellular clavate trichomes. Previous authors have proposed that these trichomes in the Pinguicula flower play the role of 'futterhaare' ('feeding hairs') and are eaten by pollinators. The main aim of this study was to investigate whether the floral non-glandular trichomes of Pinguicula contain food reserves and thus are a reward for pollinators. The trichomes from the Pinguicula groups, which differ in their taxonomy (species from the subgenera: Temnoceras, Pinguicula and Isoloba) as well as the types of their pollinators (butterflies/flies and bees/hummingbirds), were examined. Thus, it was determined whether there are any connections between the occurrence of food trichomes and phylogeny position or pollination biology. Additionally, we determined the phylogenetic history of edible trichomes and pollinator evolution in the Pinguicula species. METHODS: The species that were sampled were: Pinguicula moctezumae, P. esseriana, P. moranensis, P. emarginata, P. rectifolia, P. mesophytica, P. hemiepiphytica, P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia, P. gigantea, P. lusitanica, P. alpina and P. vulgaris. Light microscopy, histochemistry, and scanning and transmission electron microscopy were used to address our aims with a phylogenetic perspective based on matK/trnK DNA sequences. KEY RESULTS: No accumulation of protein bodies or lipid droplets was recorded in the floral non-glandular trichomes of any of the analysed species. Starch grains occurred in the cells of the trichomes of the bee-/fly-pollinated species: P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia and P. gigantea, but not in P. alpina or P. vulgaris. Moreover, starch grains were not recorded in the cells of the trichomes of the Pinguicula species that have long spurs, which are pollinated by Lepidoptera (P. moctezumae, P. esseriana, P. moranensis, P. emarginata and P. rectifolia) or birds (P. mesophytica and P. hemiepihytica), or in species with a small and whitish corolla that self-pollinate (P. lusitanica). The results on the occurrence of edible trichomes and pollinator syndromes were mapped onto a phylogenetic reconstruction of the genus. CONCLUSION: Floral non-glandular trichomes play the role of edible trichomes in some Pinguicula species (P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia and P. gigantea), which are mainly classified as bee-pollinated species that had originated from Central and South America. It seems that in the Pinguicula that are pollinated by other pollinator groups (Lepidoptera and hummingbirds), the non-glandular trichomes in the flowers play a role other than that of a floral reward for their pollinators. Edible trichomes are symplesiomorphic for the Pinguicula species, and thus do not support a monophyletic group such as a synapomorphy. Nevertheless, edible trichomes are derived and are possibly a specialization for fly and bee pollinators by acting as a food reward for these visitors.


Assuntos
Flores , Tricomas , Animais , Abelhas , Filogenia , Polinização , América do Sul
6.
Protoplasma ; 257(1): 245-259, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31428856

RESUMO

Pinguicula (Lentibulariaceae) is a genus comprising around 96 species of herbaceous, carnivorous plants, which are extremely diverse in flower size, colour and spur length and structure as well as pollination strategy. In Pinguicula, nectar is formed in the flower spur; however, there is a gap in the knowledge about the nectary trichome structure in this genus. Our aim was to compare the nectary trichome structure of various Pinguicula species in order to determine whether there are any differences among the species in this genus. The taxa that were sampled were Pinguicula moctezumae, P. moranensis, P. rectifolia, P. emarginata and P. esseriana. We used light microscopy, histochemistry, scanning and transmission electron microscopy to address those aims. We show a conservative nectary trichome structure and spur anatomy in various Mexican Pinguicula species. The gross structural similarities between the examined species were the spur anatomy, the occurrence of papillae, the architecture of the nectary trichomes and the ultrastructure characters of the trichome cells. However, there were some differences in the spur length, the size of spur trichomes, the occurrence of starch grains in the spur parenchyma and the occurrence of cell wall ingrowths in the terminal cells of the nectary trichomes. Similar nectary capitate trichomes, as are described here, were recorded in the spurs of species from other Lentibulariaceae genera. There are many ultrastructural similarities between the cells of nectary trichomes in Pinguicula and Utricularia.


Assuntos
Flores/anatomia & histologia , Lamiaceae/anatomia & histologia , Néctar de Plantas/fisiologia , Tricomas/anatomia & histologia , Flores/ultraestrutura , Lamiaceae/ultraestrutura , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/ultraestrutura , Tricomas/ultraestrutura
7.
Protoplasma ; 256(2): 393-408, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30187340

RESUMO

Telocytes (TCs), a novel type of interstitial cells, are involved in tissue homeostasis maintenance. This study aimed to investigate TC presence in the interstitium of mouse testis. Additionally, inactivation of the G-coupled membrane estrogen receptor (GPER) in the testis was performed to obtain insight into TC function, regulation, and interaction with other interstitial cells. Mice were injected with a GPER antagonist (G-15; 50 µg/kg bw), and the GPER-signaling effect on TC distribution, ultrastructure, and function, as well as the interstitial tissue interaction of GPER with estrogen-related receptors (ERRs), was examined. Microscopic observations of TC morphology were performed with the use of scanning and transmission electron microscopes. Telocyte functional markers (CD34; c-kit; platelet-derived growth factor receptors α and ß, PDGFRα and ß; vascular endothelial growth factor, VEGF; and vimentin) were analyzed by immunohistochemistry/immunofluorescence and Western blot. mRNA expression of CD34 as well as ERR α, ß, and γ was measured by qRT-PCR. Relaxin and Ca2+ concentrations were analyzed by immunoenzymatic and colorimetric assays, respectively. For the first time, we reveal the presence of TCs in the interstitium together with the peritubular area of mouse testis. Telocytes were characterized by specific features such as a small cell body and extremely long prolongations, constituting a three-dimensional network mainly around the interstitial cells. Expression of all TC protein markers was confirmed. Based on scanning electron microscopic observation in GPER-blocked testis, groups of TCs were frequently seen. No changes were found in TC ultrastructure in GPER-blocked testis when compared to the control. However, tendency to TC number change (increase) after the blockage was observed. Concomitantly, no changes in mRNA CD34 expression and increase in ERR expression were detected in GPER-blocked testes. In addition, Ca2+ was unchanged; however, an increase in relaxin concentration was observed. Telocytes are an important component of the mouse testicular interstitium, possibly taking part in maintaining its microenvironment as well as contractile and secretory functions (via themselves or via controlling of other interstitial cells). These cells should be considered a unique and useful target cell type for the prevention and treatment of testicular interstitial tissue disorders based on estrogen-signaling disturbances.


Assuntos
Células Intersticiais do Testículo/metabolismo , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Telócitos/metabolismo , Testículo/metabolismo , Animais , Masculino , Camundongos , Receptor ERRalfa Relacionado ao Estrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA