Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ISME J ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676557

RESUMO

Ammonia-oxidising archaea and nitrite-oxidising bacteria are common members of marine sponge microbiomes. They derive energy for carbon fixation and growth from nitrification - the aerobic oxidation of ammonia to nitrite and further to nitrate - and are proposed to play essential roles in the carbon and nitrogen cycling of sponge holobionts. In this study, we characterise two novel nitrifying symbiont lineages, Candidatus Nitrosokoinonia and Candidatus Nitrosymbion in the marine sponge Coscinoderma matthewsi using a combination of molecular tools, in situ visualisation, and physiological rate measurements. Both represent a new genus in the ammonia-oxidising archaeal class Nitrososphaeria and the nitrite-oxidising bacterial order Nitrospirales, respectively. Furthermore, we show that larvae of this viviparous sponge are densely colonised by representatives of Ca. Nitrosokoinonia and Ca. Nitrosymbion indicating vertical transmission. In adults, the representatives of both symbiont genera are located extracellularly in the mesohyl. Comparative metagenome analyses and physiological data suggest that ammonia-oxidising archaeal symbionts of the genus Ca. Nitrosokoinonia strongly rely on endogenously produced nitrogenous compounds (i.e., ammonium, urea, nitriles/cyanides, and creatinine) rather than on exogenous ammonium sources taken up by the sponge. Additionally, the nitrite-oxidising bacterial symbionts of the genus Ca. Nitrosymbion may reciprocally support the ammonia-oxidisers with ammonia via the utilisation of sponge-derived urea and cyanate. Comparative analyses of published environmental 16S rRNA gene amplicon data revealed that Ca. Nitrosokoinonia and Ca. Nitrosymbion are widely distributed and predominantly associated with marine sponges and corals, suggesting a broad relevance of our findings.

2.
Mar Pollut Bull ; 199: 115928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141581

RESUMO

Anthropogenic inputs of petroleum hydrocarbons into the marine environment can have long lasting impacts on benthic communities. Sponges form an abundant and diverse component of benthic habitats, contributing a variety of important functional roles; however, their responses to petroleum hydrocarbons are largely unknown. This study combined a traditional ecotoxicological experimental design and endpoint with global gene expression profiling and microbial indicator species analysis to examine the effects of a water accommodated fraction (WAF) of condensate oil on a common Indo-Pacific sponge, Phyllospongia foliascens. A no significant effect concentration (N(S)EC) of 2.1 % WAF was obtained for larval settlement, while gene-specific (N(S)EC) thresholds ranged from 3.4 % to 8.8 % WAF. Significant shifts in global gene expression were identified at WAF treatments ≥20 %, with larvae exposed to 100 % WAF most responsive. Results from this study provide an example on the incorporation of non-conventional molecular and microbiological responses into ecotoxicological studies on petroleum hydrocarbons.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Larva/metabolismo , Hidrocarbonetos/análise , Petróleo/análise , Tempo (Meteorologia) , Água/análise , Poluentes Químicos da Água/análise , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
3.
Sci Total Environ ; 904: 166658, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659522

RESUMO

Understanding the rapid responses of marine microbiomes to environmental disturbances is paramount for supporting early assessments of harm to high-value ecosystems, such as coral reefs. Yet, management guidelines aimed at protecting aquatic life from environmental pollution remain exclusively defined for organisms at higher trophic levels. In this study, 16S rRNA gene amplicon sequencing was applied in conjunction with propidium monoazide for cell-viability assessment as a sensitive tool to determine taxon- and community-level changes in a seawater microbial community under copper (Cu) exposure. Bayesian model averaging was used to establish concentration-response relationships to evaluate the effects of copper on microbial composition, diversity, and richness for the purpose of estimating microbiome Hazard Concentration (mHCx) values. Predicted mHC5 values at which a 5 % change in microbial composition, diversity, and richness occurred were 1.05, 0.72, and 0.38 µg Cu L-1, respectively. Threshold indicator taxa analysis was applied across the copper concentrations to identify taxon-specific change points for decreasing taxa. These change points were then used to generate a Prokaryotic Sensitivity Distribution (PSD), from which mHCxdec values were derived for copper, suitable for the protection of 99, 95, 90, and 80 % of the marine microbiome. The mHC5dec guideline value of 0.61 µg Cu L-1, protective of 95 % of the marine microbial community, was lower than the equivalent Australian water quality guideline value based on eukaryotic organisms at higher trophic levels. This suggests that marine microbial communities might be more vulnerable, highlighting potential insufficiencies in their protection against copper pollution. The mHCx values proposed here provide approaches to quantitatively assess the effects of contaminants on microbial communities towards the inclusion of prokaryotes in future water quality guidelines.


Assuntos
Antozoários , Microbiota , Animais , Cobre/toxicidade , RNA Ribossômico 16S/genética , Teorema de Bayes , Austrália
4.
Environ Pollut ; 332: 121963, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37286027

RESUMO

The risks posed by petroleum spills to coral reefs are poorly understood and quantifying acute toxicity thresholds for aromatic hydrocarbons to reef-building corals is required to assess their sensitivity relative to other taxa. In this study, we exposed Acropora millepora to toluene, naphthalene and 1-methylnaphthalene (1-MN) in a flow-through system and assessed survivorship and sublethal responses including growth, colour and the photosynthetic performance of symbionts. Median 50% lethal concentrations (LC50s) decreased over the 7-d exposure period, reaching asymptotic values of 22,921, 5,268, 1167 µg L-1 for toluene, naphthalene and 1-MN, respectively. Corresponding toxicokinetic parameters (εLC50) defining the time progression of toxicity were 0.830, 0.692, and 0.256 d-1, respectively. Latent effects after an additional 7-d recovery in uncontaminated seawater were not observed. Effect concentrations (EC50s) for 50% growth inhibition were 1.9- to 3.6-fold lower than the LC50s for each aromatic hydrocarbon. There were no observed effects of aromatic hydrocarbon exposure on colour score (a proxy for bleaching) or photosynthetic efficiency. Acute and chronic critical target lipid body burdens (CTLBBs) of 70.3 ± 16.3 and 13.6 ± 18.4 µmol g-1 octanol (± standard error) were calculated for survival and growth inhibition based on 7-d LC50 and EC10 values, respectively. These species-specific constants indicate adult A. millepora is more sensitive than other corals reported so far but is of average sensitivity in comparison with other aquatic taxa in the target lipid model database. These results advance our understanding of acute hazards of petroleum contaminants to key habitat-building tropical coral reef species.


Assuntos
Antozoários , Petróleo , Animais , Antozoários/fisiologia , Naftalenos/toxicidade , Tolueno , Petróleo/toxicidade , Lipídeos
5.
ISME Commun ; 3(1): 53, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37311801

RESUMO

Oceans are rapidly warming and acidifying in the context of climate change, threatening sensitive marine biota including coral reef sponges. Ocean warming (OW) and ocean acidification (OA) can impact host health and associated microbiome, but few studies have investigated these effects, which are generally studied in isolation, on a specific component of the holobiont. Here we present a comprehensive view of the consequences of simultaneous OW and OA for the tropical sponge Stylissa flabelliformis. We found no interactive effect on the host health or microbiome. Furthermore, OA (pH 7.6 versus pH 8.0) had no impact, while OW (31.5 °C versus 28.5 °C) caused tissue necrosis, as well as dysbiosis and shifts in microbial functions in healthy tissue of necrotic sponges. Major taxonomic shifts included a complete loss of archaea, reduced proportions of Gammaproteobacteria and elevated relative abundances of Alphaproteobacteria. OW weakened sponge-microbe interactions, with a reduced capacity for nutrient exchange and phagocytosis evasion, indicating lower representations of stable symbionts. The potential for microbially-driven nitrogen and sulphur cycling was reduced, as was amino acid metabolism. Crucially, the dysbiosis annihilated the potential for ammonia detoxification, possibly leading to accumulation of toxic ammonia, nutrient imbalance, and host tissue necrosis. Putative defence against reactive oxygen species was greater at 31.5 °C, perhaps as microorganisms capable of resisting temperature-driven oxidative stress were favoured. We conclude that healthy symbiosis in S. flabelliformis is unlikely to be disrupted by future OA but will be deeply impacted by temperatures predicted for 2100 under a "business-as-usual" carbon emission scenario.

6.
Glob Chang Biol ; 28(16): 4900-4911, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35662355

RESUMO

Sponges are major components of benthic communities across the world and have been identified as potential "winners" on coral reefs in the face of global climate change as result of their tolerance to ocean warming and acidification (OA). Previous studies have also hypothesised that photosymbiont-containing sponges might have higher productivity under future OA conditions as a result of photosymbionts having increased access to CO2 and subsequently greater carbon production. Here we test this hypothesis for a widespread and abundant photosymbiont-containing sponge species Lamellodysidea herbacea at a CO2 seep in Papua New Guinea simulating OA conditions. We found seep sponges had relatively higher cyanobacterial abundance, chlorophyll concentrations and symbiont photosynthetic efficiency than non-seep sponges, and a three-fold higher sponge abundance at the seep site. However, while gross oxygen production was the same for seep and non-seep sponges, seep sponge dark respiration rates were higher and instantaneous photosynthesis: respiration (P:R) ratios were lower. We show that while photosymbiont containing sponges may not have increased productivity under OA, they are able to show flexibility in their relationships with microbes and offset increased metabolic costs associated with climate change associated stress.


Assuntos
Antozoários , Poríferos , Animais , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Mudança Climática , Recifes de Corais , Fotossíntese , Água do Mar
7.
Mar Pollut Bull ; 172: 112899, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34523424

RESUMO

Toxicity thresholds for dissolved oil applied in tropical ocean risk assessments are largely based on the sensitivities of temperate and/or freshwater species. To explore the suitability of these thresholds for tropical habitats we experimentally determined toxicity thresholds for eight tropical species for a partially weathered gas condensate, applied the target lipid model (TLM) to predict toxicity of fresh and weathered condensates and compared sensitivities of the tropical species with model predictions. The experimental condensate-specific hazard concentration (HC5) was 167 µg L-1 total aromatic hydrocarbons (TAH), with the TLM-modelled HC5 (78 µg L-1 TAH) being more conservative, supporting TLM-modelled thresholds for tropical application. Putative species-specific critical target lipid body burdens (CTLBBs) indicated that several of the species tested were among the more sensitive species in the TLM database ranging from 5.1 (coral larvae) to 97 (sponge larvae) µmol g-1 octanol and can be applied in modelling risk for tropical marine ecosystems.


Assuntos
Antozoários , Poluentes Químicos da Água , Animais , Ecossistema , Água Doce , Óleos , Poluentes Químicos da Água/toxicidade
8.
Mar Pollut Bull ; 170: 112536, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34126443

RESUMO

The reduction in benthic light from natural sediment resuspension events, dredging activities and clouds was quantified over multiple time periods (days to weeks) from a 3-year in-situ field study in the inshore turbid-zone coral communities of the Great Barrier Reef. The results were then used to examine the tolerance levels of three coral species and a sponge to light reduction and associated changes in spectral light quality (in conjunction with elevated sediment concentrations) in a 28-day laboratory-based study. All species survived the exposures but sub-lethal responses involving changes in pigmentation, lipids and lipid ratios were observed. A pocilloporid coral was the most sensitive taxon, with a 28-d EC10 value for bleaching (dissociation of the symbiosis) of 2.7 mol photons m2 d-1. The possibility of such light reduction levels occurring naturally and/or during maintenance dredging activities was then examined using the 3-year in-situ field study as part of a risk assessment.


Assuntos
Antozoários , Recifes de Corais , Animais , Sedimentos Geológicos , Fenômenos Físicos , Simbiose
9.
Sci Total Environ ; 777: 146079, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33684747

RESUMO

Coral larval settlement patterns are influenced by a vast array of factors; however, the relative roles of individual factors are rarely tested in isolation, leading to confusion about which are most crucial for settlement. For example, direct effects of the light environment are often cited as a major factor influencing settlement patterns, yet this has not been demonstrated under environmentally realistic lighting regimes in the absence of confounding factors. Here we apply programmable multispectral lights to create realistic light spectra, while removing correlating (but not obvious) factors that are common in laboratory settlement experiments. Using two common species of Acropora - key framework builders of the Great Barrier Reef - we find little evidence that light intensity or changes in the spectral profile play a substantial role in larval settlement under most environmentally realistic settings but can under more extreme or artificial settings. We alternatively hypothesise and provide evidence that chronic light conditions and recent sediment exposures that impact benthic substrates (e.g., crustose coralline algae) have a greater impact on settlement success. Under these conditions, there was a decrease of up to 74% settlement success. Management of water quality conditions that impact the quality of benthic-settlement substrates therefore should present a priority area of focus for improving coral recruitment.


Assuntos
Antozoários , Animais , Recifes de Corais , Larva , Luz , Qualidade da Água
10.
Environ Microbiol ; 22(11): 4732-4744, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32869905

RESUMO

Coral reefs are facing increasing pressure from rising seawater temperatures and ocean acidification. Sponges have been proposed as possible winners in the face of climate change; however, little is known about the mechanisms underpinning their predicted tolerance. Here we assessed whether microbiome-mediated cross-generational acclimatization could enable the photosynthetic sponge Carteriospongia foliascens to survive under future climate scenarios. To achieve this, we first established the potential for vertical (cross-generational) transmission of symbionts. Sixty-four amplicon sequence variants accounting for >90% of the total C. foliascens microbial community were present across adult, larval and juvenile life stages, showing that a large proportion of the microbiome is vertically acquired and maintained. When C. foliascens were exposed to climate scenarios projected for 2050 and 2100, the host remained visibly unaffected (i.e. no necrosis/bleaching) and the overall microbiome was not significantly different amongst treatments in adult tissue, the respective larvae or recruits transplanted amongst climate treatments. However, indicator species analysis revealed that parental exposure to future climate scenarios altered the presence and abundance of a small suite of microbial taxa in the recruits, thereby revealing the potential for microbiome-mediated cross-generational acclimatization through both symbiont shuffling and symbiont switching within a vertically acquired microbiome.


Assuntos
Mudança Climática , Microbiota , Poríferos/microbiologia , Poríferos/fisiologia , Aclimatação , Animais , Concentração de Íons de Hidrogênio , Larva/microbiologia , Larva/fisiologia , Fotossíntese , Água do Mar/química , Água do Mar/microbiologia , Temperatura
11.
Sci Rep ; 10(1): 4762, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179846

RESUMO

Dredging increases suspended sediment concentrations (SSCs), causing elevated water turbidity (cloudiness) and light attenuation. Close to dredging, low light periods can extend over many days, affecting phototrophic epibenthic organisms like corals. To improve the ability to predict and manage dredging impacts, we tested the response of corals to an extended period of elevated turbidity using an automated sediment dosing system that precisely controlled SSCs and adjusted light availability accordingly. Replicates of four common species of corals encompassing different morphologies were exposed to turbidity treatments of 0-100 mg L-1 SSC, corresponding to daily light integrals of 12.6 to 0 mol quanta m-2 d-1, over a period of ∼7 weeks. Symbiotic dinoflagellate density and algal pigment concentration, photosynthetic yields, lipid concentrations and ratios and growth varied among the turbidity treatments, with corals exhibiting photoacclimation within low turbidity treatments. A range of physiological responses were observed within the high turbidity treatments (low light), including bleaching and changes in lipid levels and ratios. Most corals, except P. damicornis, were capable of adjusting to a turbidity treatment involving a mean light level of 2.3 mol photons m-2 d-1 in conjunction with a SSC of 10 mg L-1 over the 7 week period.


Assuntos
Aclimatação , Antozoários/metabolismo , Antozoários/fisiologia , Sedimentos Geológicos , Processos Fototróficos , Animais , Dinoflagellida/fisiologia , Luz , Metabolismo dos Lipídeos , Fotossíntese , Simbiose , Fatores de Tempo
12.
Mol Ecol ; 29(8): 1452-1462, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32223031

RESUMO

Nutrient levels in coastal environments have been increasing globally due to elevated inputs of sewage and terrigenous sediments carrying fertilizers. Yet, despite their immense filtering capacities, marine sponges appear to be less affected by elevated nutrients than sympatric benthic organisms, such as corals. While the molecular-level stress response of sponges to elevated seawater temperatures and other toxicants has been defined, this study represents the first global gene expression analysis of how sponges respond to elevated nitrogen. Gene correlation network analysis revealed that sponge gene modules, coded by colours, became either highly upregulated (Blue) or downregulated (Turquoise, Black, Brown) as nitrogen treatment levels increased. Gene Ontology enrichment analysis of the different modules revealed genes involved in cell signalling, immune response and flagella motility were affected by increasing nitrogen levels. Notably, a decrease in the regulation of NF-kappaB signalling and an increase in protein degradation was identified, which is comparable to metabolic pathways associated with the sponge thermal stress response. These results highlight that Cymbastela stipitata can rapidly respond to changes in the external environment and identifies pathways that probably contribute to the ability of C. stipitata to tolerate short-term nutrient pulses.


Assuntos
Antozoários , Poríferos , Animais , Redes Reguladoras de Genes , Nitrogênio , Poríferos/genética , Transcriptoma
13.
mSystems ; 4(6)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822603

RESUMO

Accidental oil spills from shipping and during extraction can threaten marine biota, particularly coral reef species which are already under pressure from anthropogenic disturbances. Marine sponges are an important structural and functional component of coral reef ecosystems; however, despite their ecological importance, little is known about how sponges and their microbial symbionts respond to petroleum products. Here, we use a systems biology-based approach to assess the effects of water-accommodated fractions (WAF) of crude oil, chemically enhanced water-accommodated fractions of crude oil (CWAF), and dispersant (Corexit EC9500A) on the survival, metamorphosis, gene expression, and microbial symbiosis of the abundant reef sponge Rhopaloeides odorabile in larval laboratory-based assays. Larval survival was unaffected by the 100% WAF treatment (107 µg liter-1 polycyclic aromatic hydrocarbon [PAH]), whereas significant decreases in metamorphosis were observed at 13% WAF (13.9 µg liter-1 PAH). The CWAF and dispersant treatments were more toxic, with decreases in metamorphosis identified at 0.8% (0.58 µg liter-1 PAH) and 1.6% (38 mg liter-1 Corexit EC9500A), respectively. In addition to the negative impact on larval settlement, significant changes in host gene expression and disruptions to the microbiome were evident, with microbial shifts detected at the lowest treatment level (1.6% WAF; 1.7 µg liter-1 PAH), including a significant reduction in the relative abundance of a previously described thaumarchaeal symbiont. The responsiveness of the R. odorabile microbial community to the lowest level of hydrocarbon treatment highlights the utility of the sponge microbiome as a sensitive marker for exposure to crude oils and dispersants.IMPORTANCE Larvae of the sponge R. odorabile survived exposure to high concentrations of petroleum hydrocarbons; however, their ability to settle and metamorphose was adversely affected at environmentally relevant concentrations, and these effects were paralleled by marked changes in sponge gene expression and preceded by disruption of the symbiotic microbiome. Given the ecological importance of sponges, uncontrolled hydrocarbon releases from shipping accidents or production could affect sponge recruitment, which would have concomitant consequences for reef ecosystem function.

14.
Sci Total Environ ; 695: 133837, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31422324

RESUMO

Sponges are important components of many marine communities and perform key functional roles. Little is known on the processes that drive larval dispersal and habitat selection in sponges, and in particular under stress scenarios. The increase in sediment in the marine environment is a growing concern for the health of ecosystems, but scarce information exists on the effects of sediment on sponge larvae. This study assessed the effects of suspended and deposited sediment on the larva of Carteriospongia foliascens. A suspended sediment concentration (SSC) of 100 mg L-1 caused homogenisation of the natural pattern of phototactic responses, leading to 100% of photonegative behaviours and a reduction of swim speeds by 27%. After 24 h exposure to suspended sediments, fine particles were found attached to larval cilia, causing abnormal swimming behaviours. Larvae did not have the ability to remove the attached sediment that led to a transformation of the larval body into a cocoon-like morphology and death. Mortality tripled from 3 mg L-1 (9%) to 300 mg L-1 (30%) and the relative SSC EC10 and EC50 values corresponded to 2.6 mg L-1 and 17.6 mg L-1 respectively. Survival, as determined by live swimming larvae, exceeded 50% even in the highest SSC of 300 mg L-1, however settlement success decreased by ~20%. Larvae were able to settle onto substrate having deposited sediment levels (DSLs) up to 3 mg cm-2 (~24%), but recorded a 25 × chance of dislodgement compared to settlers on substrate with DSL of 0.3 mg cm-2. Larvae avoided settling onto substrates with DSLs >10 mg cm-2 and preferentially settled onto alternative vertical substrate that were free of sediment. While C. foliascens larvae have some ability to survive and settle through conditions of elevated sediment, detrimental effects are also clear.


Assuntos
Sedimentos Geológicos , Poríferos/fisiologia , Animais , Monitoramento Ambiental , Poluentes da Água
15.
FEMS Microbiol Ecol ; 94(12)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30304402

RESUMO

Climate change is causing rapid changes in reef structure, biodiversity, and function, though most sponges are predicted to tolerate conditions projected for 2100. Sponges maintain intimate relationships with microbial symbionts, with previous studies suggesting that microbial flexibility may be pivotal to success under ocean acidification (OA). We performed a reciprocal transplantation of the coral reef sponges Coelocarteria singaporensis and Stylissa cf. flabelliformis between a control reef site and an adjacent CO2 vent site in Papua New Guinea to explore how the sponge microbiome responds to OA. Microbial communities of C. singaporensis, which differed initially between sites, did not shift towards characteristic control or vent microbiomes, even though relative abundances of Chloroflexi and Cyanobacteria increased and that of Thaumarchaeota decreased 7 months after transplantation to the control site. Microbial communities of S. cf. flabelliformis, which were initially stable between sites, did not respond specifically to transplantation but collectively exhibited a significant change over time, with a relative increase in Thaumarchaeota and decrease in Proteobacteria in all treatment groups. The lack of a community shift upon transplantation to the vent site suggests that microbial flexibility, at least in the adult life-history stage, does not necessarily underpin host survival under OA .


Assuntos
Archaea/crescimento & desenvolvimento , Chloroflexi/crescimento & desenvolvimento , Mudança Climática , Cianobactérias/crescimento & desenvolvimento , Microbiota/fisiologia , Poríferos/microbiologia , Proteobactérias/crescimento & desenvolvimento , Água do Mar/química , Animais , Biodiversidade , Dióxido de Carbono/análise , Recifes de Corais , Oceanos e Mares , Papua Nova Guiné , Água do Mar/microbiologia
16.
Ecology ; 99(9): 1920-1931, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29989167

RESUMO

Anthropogenic stressors are impacting ecological systems across the world. Of particular concern are the recent rapid changes occurring in coral reef systems. With ongoing degradation from both local and global stressors, future reefs are likely to function differently from current coral-dominated ecosystems. Determining key attributes of future reef states is critical to reliably predict outcomes for ecosystem service provision. Here we explore the impacts of changing sponge dominance on coral reefs. Qualitative modelling of reef futures suggests that changing sponge dominance due to increased sponge abundance will have different outcomes for other trophic levels compared with increased sponge dominance as a result of declining coral abundance. By exploring uncertainty in the model outcomes we identify the need to (1) quantify changes in carbon flow through sponges, (2) determine the importance of food limitation for sponges, (3) assess the ubiquity of the recently described "sponge loop," (4) determine the competitive relationships between sponges and other benthic taxa, particularly algae, and (5) understand how changing dominance of other organisms alters trophic pathways and energy flows through ecosystems. Addressing these knowledge gaps will facilitate development of more complex models that assess functional attributes of sponge-dominated reef ecosystems.


Assuntos
Antozoários , Ecossistema , Animais , Carbono , Mudança Climática , Recifes de Corais
17.
FEMS Microbiol Ecol ; 93(6)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541458

RESUMO

Reports of sponge disease are becoming increasingly frequent, although almost all instances involve shallow-water, tropical species. Here, we describe the first disease affecting the deep-water sponge, Geodia barretti. The disease is characterised by brown/black discolouration of the sponge tissue, extensive levels of tissue disintegration and increased levels of fouling. Disease prevalence was quantified using video survey transects conducted between 100 and 220 m in Korsfjorden, Norway, and the microbial communities of healthy and diseased sponges were compared using 16S rRNA gene sequencing. Highly divergent community profiles were evident between the different health states, with distinct community shifts involving higher relative abundances of Bacteroidetes, Firmicutes and Deltaproteobacteria in diseased individuals. In addition, three operational taxonomic units were exclusively present in diseased individuals and were shared between the disease lesions and the apparently healthy tissue of diseased individuals, suggesting a non-localised infection or dysbiosis. Genomic analysis of the G. barretti microbiome combined with experimental work to assess the mechanisms of infection will further elucidate the role of microorganisms in the disease.


Assuntos
Disbiose , Geodia/microbiologia , Microbiota , Animais , Bacteroidetes/classificação , Deltaproteobacteria/classificação , Firmicutes/classificação , Noruega , RNA Ribossômico 16S/genética
18.
Nat Commun ; 7: 11870, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27306690

RESUMO

Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host-microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the world's oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions.


Assuntos
Coevolução Biológica , Consórcios Microbianos/genética , Microbiota/genética , Filogenia , Poríferos/microbiologia , RNA Ribossômico 16S/genética , Animais , Teorema de Bayes , Biodiversidade , Ecossistema , Poríferos/classificação , Poríferos/genética , Simbiose/fisiologia
19.
PLoS One ; 11(4): e0153184, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27049650

RESUMO

One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15-30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m-among tiles). Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs.


Assuntos
Recifes de Corais , Austrália
20.
PeerJ ; 3: e1435, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26713229

RESUMO

Sponges are well known for hosting dense and diverse microbial communities, but how these associations vary with biogeography and environment is less clear. Here we compared the microbiome of an ecologically important sponge species, Carteriospongia foliascens, over a large geographic area and identified environmental factors likely responsible for driving microbial community differences between inshore and offshore locations using co-occurrence networks (NWs). The microbiome of C. foliascens exhibited exceptionally high microbial richness, with more than 9,000 OTUs identified at 97% sequence similarity. A large biogeographic signal was evident at the OTU level despite similar phyla level diversity being observed across all geographic locations. The C. foliascens bacterial community was primarily comprised of Gammaproteobacteria (34.2% ± 3.4%) and Cyanobacteria (32.2% ± 3.5%), with lower abundances of Alphaproteobacteria, Bacteroidetes, unidentified Proteobacteria, Actinobacteria, Acidobacteria and Deltaproteobacteria. Co-occurrence NWs revealed a consistent increase in the proportion of Cyanobacteria over Bacteroidetes between turbid inshore and oligotrophic offshore locations, suggesting that the specialist microbiome of C. foliascens is driven by environmental factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA