Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(4): 1957-1965, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38435049

RESUMO

Rare-earth (RE) metal-organic frameworks (MOFs) synthesized in the presence of fluorine-donating modulators or linkers are an important new subset of functional MOFs. However, the exact nature of the REaXb core of the molecular building block (MBB) of the MOF, where X is a µ2 or 3-bridging group, remains unclear. Investigation of one of the archetypal members of this family with the stable fcu framework topology, Y-fum-fcu-MOF (1), using a combination of experimental techniques, including high-field (20 T) solid-state nuclear magnetic resonance spectroscopy, has determined two sources of framework disorder involving the µ3-X face-capping group of the MBB and the fumarate (fum) linker. The core of the MBB of 1 is shown to contain a mixture of µ3-F- and (OH)- groups with preferential occupation at the crystallographically different face-capping sites that result in different internally lined framework tetrahedral cages. The fum linker is also found to display a disordered arrangement involving bridging- or chelating-bridging bis-bidentate modes over the fum linker positions without influencing the MBB orientation. This linker disorder will, upon activation, result in the creation of Y3+ ions with potentially one or two additional uncoordinated sites possessing differing degrees of Lewis acidity. Crystallographically determined host-guest relationships for simple sorbates demonstrate the favored sorption sites for N2, CO2, and CS2 molecules that reflect the chemical nature of both the framework and the sorbate species with the structural partitioning of the µ3-groups apparent in determining the favored sorption site of CS2. The two types of disorder found within 1 demonstrate the complexity of fluoride-containing RE-MOFs and highlight the possibility to tune this and other frameworks to contain different proportions and segregations of µ3-face-capping groups and degrees of linker disorder for specifically tailored applications.

2.
Chemistry ; 29(21): e202203773, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36651661

RESUMO

Controlling aspects of the µ2 -X- bridging anion in the metal-organic framework Ga-MIL-53 [GaX(bdc)] (X- =(OH)- or F- , bdc=1, 4-benzenedicarboxylate) is shown to direct the temperature at which thermally induced breathing transitions of this framework occur. In situ single crystal X-ray diffraction studies reveal that substituting 20 % of (OH)- in [Ga(OH)(bdc)] (1) for F- to produce [Ga(OH)0.8 F0.2 (bdc)] (2) stabilises the large pore (lp) form relative to the narrow pore (np) form, causing a well-defined decrease in the onset of the lp to np transition at higher temperatures, and the adsorption/desorption of nitrogen at lower temperatures through np to lp to intermediate (int) pore transitions. These in situ diffraction studies have also yielded a more plausible crystal structure of the int-[GaX(bdc)] ⋅ H2 O phases and shown that increasing the heating rate to a flash heating regime can enable the int-[GaX(bdc)] ⋅ H2 O to lp-[GaX(bdc)] transition to occur at a lower temperature than np-[GaX(bdc)] via an unreported pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA