Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 673: 291-300, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38875795

RESUMO

Breast cancers that overexpress human epidermal growth factor receptor 2 (HER2) have poor prognosis. Moreover, available chemotherapies cause numerous side effects due to poor selectivity. To advance more effective and safer therapies for HER2-positive breast cancer, we explored the fusion of drug delivery technology and immunotherapy. Our research led to the design of immunocubosomes loaded with panobinostat and functionalized with trastuzumab antibodies, enabling precise targeting of breast cancer cells that overexpress HER2. We characterised the nanostructure of cubosomes using small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (cryo-TEM), and dynamic light scattering (DLS). Moreover, we confirmed the integrity of the trastuzumab antibodies on the immunocubosomes by Fourier-transform infrared spectroscopy (FTIR) and sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Additionally, we found that panobinostat-loaded immunocubosomes were more cytotoxic, and in an uptake-dependant manner, towards a HER2-positive breast cancer cell line (SKBR3) compared to a cell line representing healthy cells (L929). These results support that the functionalization of cubosomes with antibodies enhances both the effectiveness of the loaded drug and its selectivity for targeting HER2-positive breast cancer cells.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Trastuzumab , Humanos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Trastuzumab/química , Trastuzumab/farmacologia , Feminino , Sobrevivência Celular/efeitos dos fármacos , Panobinostat/farmacologia , Panobinostat/química , Linhagem Celular Tumoral , Tamanho da Partícula , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Propriedades de Superfície , Proliferação de Células/efeitos dos fármacos
2.
Biochimie ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663457

RESUMO

TSPO is a ubiquitous transmembrane protein used as a pharmacological marker in neuroimaging. The only known atomic structure of mammalian TSPOs comes from the solution NMR of mouse TSPO (mTSPO) bound to the PK11195 ligand and in a DPC surfactant environment. No structure is available in a biomimetic environment and without PK11195 which strongly stiffens the protein. We measured the effect of different amphiphilic environments on ligand-free mTSPO to study its structure/function and find optimal solubilization conditions. By replacing the SDS surfactant, where the recombinant protein is purified, with mixed lipid:surfactant (DMPC:DPC) micelles at different ratios (0:1, 1:2, and 2:1, w:w), the α-helix content and interactions and the intrinsic tryptophan (Trp) fluorescence of mTSPO are gradually increased. Small-angle X-ray scattering (SAXS) shows a more extended mTSPO/belt complex with the addition of lipids: Dmax ∼95 Å in DPC alone versus ∼142 Å in DMPC:DPC (1:2). SEC-MALLS shows that the molecular composition of the mTSPO belt is ∼98 molecules for DPC alone and ∼58 DMPC and ∼175 DPC for DMPC:DPC (1:2). Additionally, DMPC:DPC micelles stabilize mTSPO compared to DPC alone, where the protein has a greater propensity to aggregate. These structural changes are consistent with the increased affinity of mTSPO for the PK11195 ligand in presence of lipids (Kd ∼70 µM in DPC alone versus ∼0.91 µM in DMPC:DPC, 1:2), as measured by microscale thermophoresis (MST). In conclusion, mixed lipid:surfactant micelles open new possibilities for the stabilization of membrane proteins and for their study in solution in a more biomimetic amphiphilic environment.

3.
Food Res Int ; 179: 113968, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342524

RESUMO

The rising demand for plant-based meat analogues as alternatives to animal products has sparked interest in understanding the complex interplay between their structural and mechanical properties. The ability to manipulate the processing parameters and protein blend composition offers fundamental insights into the texturization process and holds economic and sustainable implications for the food industry. Consequently, the correlation between mechanical and structural properties in meat analogues is crucial for achieving consumer satisfaction and successful market penetration, providing comprehensive insights into the textural properties of meat analogues and their potential to mimic traditional animal produce. Our study delves into the relationship between structural and mechanical anisotropy in meat analogues produced using high moisture extrusion cooking, which involves blending protein, water, and other ingredients, followed by a controlled heating and cooling process to achieve a fibrous texture akin to traditional meat. By employing techniques such as scanning small-angle X-ray scattering, scanning electron microscopy, and mechanical testing we investigate the fibrous structure and its impact on the final texture of meat analogues. We show that textural and structural anisotropy is reflected on the mechanical properties measured using tensile and dynamic mechanical techniques. It is demonstrated that the calculated anisotropy indexes, a measure for the degree of textural and structural anisotropy, increase with increasing protein content. Our findings have significant implications for the understanding and development of plant-based meat analogues with structures that can be tuned to closely resemble the animal meat textures of choice, thereby enabling consumers to transition to more sustainable dietary choices while preserving familiar eating habits.


Assuntos
Temperatura Baixa , Substitutos da Carne , Animais , Anisotropia , Culinária , Carne
4.
ACS Nano ; 18(4): 3382-3396, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38237058

RESUMO

Virus-like particles (VLPs) are emerging as nanoscaffolds in a variety of biomedical applications including delivery of vaccine antigens and cargo such as mRNA to mucosal surfaces. These soft, colloidal, and proteinaceous structures (capsids) are nevertheless susceptible to mucosal environmental stress factors. We cross-linked multiple capsid surface amino acid residues using homobifunctional polyethylene glycol tethers to improve the persistence and survival of the capsid to model mucosal stressors. Surface cross-linking enhanced the stability of VLPs assembled from Acinetobacter phage AP205 coat proteins in low pH (down to pH 4.0) and high protease concentration conditions (namely, in pig and mouse gastric fluids). Additionally, it increased the stiffness of VLPs under local mechanical indentation applied using an atomic force microscopy cantilever tip. Small angle X-ray scattering revealed an increase in capsid diameter after cross-linking and an increase in capsid shell thickness with the length of the PEG cross-linkers. Moreover, surface cross-linking had no effect on the VLPs' mucus translocation and accumulation on the epithelium of in vitro 3D human nasal epithelial tissues with mucociliary clearance. Finally, it did not compromise VLPs' function as vaccines in mouse subcutaneous vaccination models. Compared to PEGylation without cross-linking, the stiffness of surface cross-linked VLPs were higher for the same length of the PEG molecule, and also the lifetimes of surface cross-linked VLPs were longer in the gastric fluids. Surface cross-linking using macromolecular tethers, but not simple conjugation of these molecules, thus offers a viable means to enhance the resilience and survival of VLPs for mucosal applications.


Assuntos
Resiliência Psicológica , Vacinas de Partículas Semelhantes a Vírus , Humanos , Animais , Camundongos , Suínos , Proteínas do Capsídeo/química , Capsídeo/metabolismo , Vacinas de Partículas Semelhantes a Vírus/genética
5.
Langmuir ; 40(2): 1544-1554, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166478

RESUMO

Age-long ambition of medical scientists has always been advancement in healthcare and therapeutic medicine. Biomedical research indeed claims paramount importance in nanomedicine and drug delivery, and the development of biocompatible storage structures for delivering drugs stands at the heart of emerging scientific works. The delivery of drugs into the human body is nevertheless a nontrivial and challenging task, and it is often addressed by using amphiphilic compounds as nanosized delivery vehicles. Pluronics belong to a peculiar class of biocompatible and thermosensitive nonionic amphiphilic copolymers, and their self-assemblies are employed as drug delivery excipients because of their unique properties. We herein report on the encapsulation of diclofenac sodium within Pluronic F68 self-assemblies in water, underpinning the impact of the drug on the rheological and microstructural evolution of pluronic-based systems. The self-assembly and thermoresponsive micellization were studied through isothermal steady rheological experiments at different temperatures on samples containing 45 wt % Pluronic F68 and different amounts of diclofenac sodium. The adoption of scattering techniques, small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), allowed for the description of the system features at the nanometer length scale, providing information about the characteristic size of each part of the micellar structures as a function of temperature and drug concentration. Diclofenac sodium is not a good fellow for Pluronic F68. The triblock copolymer aids the encapsulation of the drug, highly improving its water solubility, whereas diclofenac sodium somehow hinders Pluronic self-assembly. By using a simple empirical model and no fitting parameters, the steady viscosity can be predicted, although qualitatively, through the volume fraction of the micelles extracted through scattering techniques and compared to the rheological one. A tunable control of the viscous behavior of such biomedical systems may be achieved through the suitable choice of their composition.


Assuntos
Micelas , Poloxâmero , Humanos , Poloxâmero/química , Espalhamento a Baixo Ângulo , Diclofenaco , Difração de Raios X , Polímeros , Anti-Inflamatórios , Água/química
6.
Phys Chem Chem Phys ; 26(4): 2806-2814, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38196347

RESUMO

Bio- or plant-based surfactants are a sustainable and renewable alternative to replace synthetic chemicals for environmental, drugs and food applications. However, these "green" surfactants have unique molecular structures, and their self-assembly in water might lead to complex morphologies and unexpected properties. The micellization of saponin molecules, such as glycyrrhizic acid (GA), differs significantly from those of conventional synthetic surfactants, yet these differences are often overlooked. Saponins self-assemble in complex hierarchical helical morphologies similar to bile salts, rather than the expected globular, ellipsoidal and wormlike micelles. Here, we review two potential routes for molecular self-assembly of GA, namely kinetics of crystallization and thermodynamic equilibrium, focusing on their structure as a function of concentration. Some uncertainty remains to define which route is followed by GA self-assembly, as well as the first type of aggregate formed at low concentrations, thus we review the state-of-the-art information about GA assembly. We compare the self-assembly of GA with conventional linear surfactants, and identify their key similarities and differences, from molecular and chemical perspectives, based on the critical packing parameter (CPP) theory. We expect that this work will provide perspectives for the unclear process of GA assembly, and highlight its differences from conventional micellization.


Assuntos
Ácido Glicirrízico , Tensoativos , Tensoativos/química , Estrutura Molecular , Micelas , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA