Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Integr Cancer Ther ; 23: 15347354241243024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708673

RESUMO

Colorectal cancer (CRC) is the third leading cause of cancer-related death in the world. Multiple evidence suggests that there is an association between excess fat consumption and the risk of CRC. The long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential for human health, and both in vitro and in vivo studies have shown that these fatty acids can prevent CRC development through various molecular mechanisms. These include the modulation of arachidonic acid (AA) derived prostaglandin synthesis, alteration of growth signaling pathways, arrest of the cell cycle, induction of cell apoptosis, suppression of angiogenesis and modulation of inflammatory response. Human clinical studies found that LC n-3 PUFA combined with chemotherapeutic agents can improve the efficacy of treatment and reduce the dosage of chemotherapy and associated side effects. In this review, we discuss comprehensively the anti-cancer effects of LC n-3 PUFA on CRC, with a main focus on the underlying molecular mechanisms.


Assuntos
Neoplasias Colorretais , Ácidos Graxos Ômega-3 , Humanos , Neoplasias Colorretais/tratamento farmacológico , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Nutr Metab (Lond) ; 19(1): 12, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236377

RESUMO

BACKGROUND: Our in vitro studies demonstrated that krill oil (KO) has anti-cancer potential. This study aimed to compare the anti-cancer effects of KO with a commonly used chemotherapeutic drug, oxaliplatin and to identify the molecular mechanisms associated with KO supplementation in a mouse model of colorectal cancer (CRC). METHODS: Thirty-six male Balb/c mice were randomly divided into six groups. Five groups received standard chow diet supplemented with KO (150 g/kg)), corn oil (150 g/kg), KO combined with ½ dose of oxaliplatin (1.5 mg/kg body weight/3 times per week), corn oil combined with ½ dose of oxaliplatin (1.5 mg/kg body weight/3 times per week), or a full dose of oxaliplatin (3 mg/kg body weight/3 times per week). The control (sham) group received a standard chow diet. Treatments started three weeks before and continued for three weeks after orthotopic CRC induction. The number of metastases, tumour weight and volume were quantified ex-vivo. The expression of cytochrome c, cleaved caspase-9 and -3, DNA damage, PD-L1, PD-L2 and HSP-70 were determined. RESULTS: A significant reductions in the weight and volume of tumours were observed in mice treated with KO and KO plus a ½ dose of oxaliplatin compared to the sham group, similar to oxaliplatin-treated mice. KO, and KO plus ½ dose of oxaliplatin significantly increased the expression of cytochrome c, cleaved caspase-9 and -3, and DNA damage and decreased expression of PD-L1, PD-L2 and HSP-70 in tumour tissues compared to the sham group. CONCLUSIONS: The in vivo anti-cancer effects of KO are comparable with oxaliplatin. Thus, dietary KO supplementation has a great potential as a therapeutic/adjunctive agent for CRC treatment.

3.
BMC Complement Med Ther ; 22(1): 34, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120511

RESUMO

BACKGROUND: We have previously reported that the free fatty acid extract (FFAE) of krill oil (KO) significantly inhibits the proliferation and migration, and induces apoptosis of colorectal cancer (CRC) cells. This study aimed to investigate the in vivo efficacy of various doses of KO supplementation on the inhibition of CRC tumour growth, molecular markers of proliferation, angiogenesis, apoptosis, the epidermal growth factor receptor (EGFR) and its downstream molecular signalling. METHODS: Male Balb/c mice were randomly divided into four groups with five in each group. The control (untreated) group received standard chow diet; and other three groups received KO supplementation at 5%, 10%, and 15% of their daily dietary intake respectively for three weeks before and after the orthotopic implantation of CT-26 CRC cells in their caecum. The expression of cell proliferation marker Ki-67 and angiogenesis marker CD-31 were assessed by immunohistochemistry. The expression of EGFR, phosphorylated EGFR (pEGFR), protein kinase B (AKT), pAKT, extracellular signal-regulated kinase (ERK1/2), pERK1/2, cleaved caspase-7, cleaved poly (ADP-ribose) polymerase (PARP), and DNA/RNA damage were determined by western blot. RESULTS: KO supplementation reduced the CRC tumour growth in a dose-dependent manner; with 15% of KO being the most effective in reduction of tumour weight and volume (68.5% and 68.3% respectively, P < 0.001), inhibition of cell proliferation by 69.9% (P < 0.001) and microvessel density by 72.7% (P < 0.001). The suppressive effects of KO on EGFR and its downstream signalling, ERK1/2 and AKT, were consistent with our previous in vitro observations. Furthermore, KO exhibited pro-apoptotic effects on tumour cells as indicated by an increase in the expression of cleaved PARP by 3.9-fold and caspase-7 by 8.9-fold. CONCLUSIONS: This study has demonstrated that KO supplementation reduces CRC tumour growth by inhibiting cancer cell proliferation and blood vessel formation and inducing apoptosis of tumour cells. These anti-cancer effects are associated with the downregulation of the EGFR signalling pathway and activation of caspase-7, PARP cleavage, and DNA/RNA damage.


Assuntos
Neoplasias Colorretais , Euphausiacea , Animais , Suplementos Nutricionais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tomografia Computadorizada por Raios X
4.
BMC Complement Med Ther ; 20(1): 372, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287803

RESUMO

BACKGROUND: The currently available treatments for colorectal cancer (CRC) are often associated with serious side-effects. Therefore, the development of a novel nutraceutical agent may provide an alternative complementary therapy for CRC. Overexpression of the epidermal growth factor receptor (EGFR) associates with a range of cancers while downregulation of EGFR signalling can inhibit cancer growth. Our previous studies have shown that the free fatty acid extract (FFAE) of krill oil exhibits anti-proliferative and pro-apoptotic properties. This study determines the effects of krill oil extract on the migration of human CRC cells, and its potential role in modulating EGFR signalling pathway and the expression of programmed death ligand 1 (PD-L1). METHODS: Human CRC cells, DLD-1 and HT-29 were treated with FFAE of KO at 0.03 and 0.12 µL/100 µL for 8 or 24 h. Cell migration was determined by Boyden chamber migration assay. The expression of EGFR, phosphorylated EGFR (pEGFR), protein kinase B (AKT), phosphorylated AKT (pAKT), extracellular signal regulated kinase (ERK1/2), phosphorylated ERK1/2 (pERK1/2) as well as PD-L1 were assessed by western blotting and immunohistochemistry. RESULTS: The FFAE of krill oil significantly inhibited cell migration compared to ethanol-treated (vehicle control) cells (P < 0.01 to P < 0.001). At the molecular level, krill oil extract reduced the expression of EGFR, pEGFR (P < 0.001 for both) and their downstream signalling, pERK1/2 and pAKT (P < 0.01 to P < 0.001) without altering total ERK 1/2 and AKT levels. In addition, the expression of PD-L1 was reduced by 67 to 72% (P < 0.001) following the treatment with krill oil extract. CONCLUSION: This study has demonstrated that krill oil may be a potential therapeutic/adjunctive agent for CRC attributed to its anti-migratory effects.. The potential anti-cancer properties of krill oil are likely to be associated with the downregulation of EGFR, pEGFR and their downstream pERK/ERK1/2 and pAKT/AKT signalling pathways along with the downregulation of PD-L1.


Assuntos
Antineoplásicos/farmacologia , Antígeno B7-H1/metabolismo , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Euphausiacea , Animais , Apoptose/efeitos dos fármacos , Regulação para Baixo , Receptores ErbB/metabolismo , Células HT29 , Humanos , Óleos
5.
Nutr Metab (Lond) ; 16: 53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428181

RESUMO

BACKGROUND: Currently available treatments for colorectal cancer (CRC) associate with numerous side-effects that reduce patients' quality of life. The effective nutraceuticals with high anti-proliferative efficacy and low side-effects are desirable. Our previous study has reported that free fatty acids extract (FFAE) of krill oil induced apoptosis of CRC cells, possibly associated with changes in mitochondrial membrane potential (MMP). The aims of this study were to compare the anti-proliferative efficacy of FFAE from krill oil on CRC cells with commonly used chemotherapeutic drug, Oxaliplatin, and to investigate the molecular mechanisms underlying the anti-proliferative effects of krill oil with a focus on intrinsic mitochondrial death pathway. METHODS: Three human CRC cell lines, including DLD-1, HT-29 and LIM-2405, and one mouse CRC cell line, CT-26, were treated with FFAE of KO and the bioactive components of krill oil, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for 24 h and 48 h. Similarly, these cell lines were treated with Oxaliplatin, a commonly used drug for CRC treatment, for 24 h. The effects of FFAE of KO, EPA, DHA and Oxaliplatin on cell proliferation, mitochondrial membrane potential and reactive oxygen species (ROS) were determined via WST-1, JC-10, and ROS assays respectively. The expression of caspase-3, caspase-9 and DNA damage following treatments of FFAE of KO was investigated via western blotting and immunohistochemistry. RESULTS: The FFAE of KO, EPA and DHA significantly inhibited cell proliferation and increased formation of ROS in all four cell lines (P < 0.01). A small dose of FFAE from KO ranged from 0.06 µL/100 µL to 0.12 µL/100 µL containing low concentrations of EPA (0.13-0.52 µM) and DHA (0.06-0.26 µM) achieved similar anti-proliferative effect as Oxaliplatin (P > 0.05). Treatments with the FFAE of KO, EPA and DHA (2:1 ratio) resulted in a significant increase in the mitochondrial membrane potential (P < 0.001). Furthermore, the expression of active forms of caspase-3 and caspase-9 was significantly increased following the treatment of FFAE of KO. CONCLUSIONS: The present study has demonstrated that the anti-proliferative effects of krill oil on CRC cells are comparable with that of Oxaliplatin, and its anti-proliferative property is associated with the activation of caspase 3/9 in the CRC cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA