Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 478: 135361, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39116748

RESUMO

The long-term effects of low-level, chronic exposure to lead and cadmium through ingestion are often overlooked, despite the urgency surrounding the clinical onset and worsening of certain pathologies caused by these metals. This work reviews current legislation, global ingestion levels, and blood levels in the general population to emphasize the need for reactivity towards this exposure, especially in at-risk populations, including patients with early-stage renal and chronic kidney disease. Global data indicates persistent chronic ingestion of lead and cadmium, with no decreasing trend in recent years, and a daily consumption of tens of micrograms worldwide. Moreover, the average blood lead and cadmium levels in the general population are concerning in many countries with some significantly exceeding healthy limits, particularly for children. Technologies developed to cleanse soil and prevent heavy metal contamination in food are not yet applicable on a global scale and remain financially inaccessible for many communities. Addressing this chronic ingestion at the human level may prove more beneficial in delaying the onset of associated clinical pathologies or preventing them all together.

2.
ACS Nano ; 18(26): 16516-16529, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38912600

RESUMO

Activated guided irradiation by X-ray (AGuIX) nanoparticles are gadolinium-based agents that have the dual benefit of mimicking the effects of a magnetic resonance imaging (MRI) contrast agent used in a clinical routine and enhancing the radiotherapeutic activity of conventional X-rays (for cancer treatment). This "theragnostic" action is explained on the one hand by the paramagnetic properties of gadolinium and on the other hand by the generation of high densities of secondary radiation following the interaction of ionizing radiation and high-Z atoms, which leads to enhanced radiation dose deposits within the tumors where the nanoparticles accumulate. Here, we report the results of a phase I trial that aimed to assess the safety and determine the optimal dose of AGuIX nanoparticles in combination with chemoradiation and brachytherapy in patients with locally advanced cervical cancer. AGuIX nanoparticles were administered intravenously and appropriately accumulated within tumors on a dose-dependent manner, as assessed by T1-weighted MRI, with a rapid urinary clearance of uncaught nanoparticles. We show that the observed tumor accumulation of the compounds can support precise delineation of functional target volumes at the time of brachytherapy based on gadolinium enhancement. AGuIX nanoparticles combined with chemoradiation appeared well tolerated among the 12 patients treated, with no dose-limiting toxicity observed. Treatment yielded excellent local control, with all patients achieving complete remission of the primary tumor. One patient had a distant tumor recurrence. These results demonstrate the clinical feasibility of using theranostic nanoparticles to augment the accuracy of MRI-based treatments while focally enhancing the radiation activity in tumors.


Assuntos
Gadolínio , Imageamento por Ressonância Magnética , Nanopartículas , Neoplasias do Colo do Útero , Gadolínio/química , Humanos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/patologia , Feminino , Nanopartículas/química , Pessoa de Meia-Idade , Braquiterapia , Meios de Contraste/química , Raios X , Adulto , Idoso , Quimiorradioterapia
3.
Methods Mol Biol ; 2804: 223-235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753151

RESUMO

Reliable predictions for the route and accumulation of nanotherapeutics in vivo are limited by the huge gap between the 2D in vitro assays used for drug screening and the 3D physiological in vivo environment. While developing a standard 3D in vitro model for screening nanotherapeutics remains challenging, multi-cellular tumor spheroids (MCTS) are a promising in vitro model for such screening. Here, we present a straightforward and flexible 3D-model microsystem made out of agarose-based micro-wells, which enables the formation of hundreds of reproducible spheroids in a single pipetting. Immunostaining and fluorescent imaging, including live high-resolution optical microscopy, can be done in situ without manipulating spheroids.


Assuntos
Hidrogéis , Nanopartículas , Esferoides Celulares , Humanos , Nanopartículas/química , Hidrogéis/química , Linhagem Celular Tumoral , Microfluídica/métodos , Microfluídica/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microscopia de Fluorescência/métodos
4.
PLoS One ; 19(4): e0292414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568898

RESUMO

To mitigate the risk of radioactive isotope dissemination, the development of preventative and curative measures is of particular interest. For mass treatment, the developed solution must be easily administered, preferably orally, with effective, nontoxic decorporating properties against a wide range of radioactive isotopes. Currently, most orally administered chelation therapy products are quickly absorbed into the blood circulation, where chelation of the radioactive isotope is a race against time due to the short circulation half-life of the therapeutic. This report presents an alternative therapeutic approach by using a functionalized chitosan (chitosan@DOTAGA) with chelating properties that remains within the gastrointestinal tract and is eliminated in feces, that can protect against ingested radioactive isotopes. The polymer shows important in vitro chelation properties towards different metallic cations of importance, including (Cs(I), Ir(III), Th(IV), Tl(I), Sr(II), U(VI) and Co(II)), at different pH (from 1 to 7) representing the different environments in the gastrointestinal tract. An in vivo proof of concept is presented on a rodent model of uranium contamination following an oral administration of Chitosan@DOTAGA. The polymer partially prevents the accumulation of uranium within the kidneys (providing a protective effect) and completely prevents its uptake by the spleen.


Assuntos
Quitosana , Protetores contra Radiação , Urânio , Quitosana/química , Urânio/química , Protetores contra Radiação/farmacologia , Polímeros , Quelantes/química
5.
Adv Healthc Mater ; 13(15): e2304250, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38444191

RESUMO

Nanoparticle (NP) surface functionalization with proteins, including monoclonal antibodies (mAbs), mAb fragments, and various peptides, has emerged as a promising strategy to enhance tumor targeting specificity and immune cell interaction. However, these methods often rely on complex chemistry and suffer from batch-dependent outcomes, primarily due to limited control over the protein orientation and quantity on NP surfaces. To address these challenges, a novel approach based on the supramolecular assembly of two peptides is presented to create a heterotetramer displaying VHHs on NP surfaces. This approach effectively targets both tumor-associated antigens (TAAs) and immune cell-associated antigens. In vitro experiments showcase its versatility, as various NP types are biofunctionalized, including liposomes, PLGA NPs, and ultrasmall silica-based NPs, and the VHHs targeting of known TAAs (HER2 for breast cancer, CD38 for multiple myeloma), and an immune cell antigen (NKG2D for natural killer (NK) cells) is evaluated. In in vivo studies using a HER2+ breast cancer mouse model, the approach demonstrates enhanced tumor uptake, retention, and penetration compared to the behavior of nontargeted analogs, affirming its potential for diverse applications.


Assuntos
Nanopartículas , Peptídeos , Nanopartículas/química , Animais , Humanos , Camundongos , Peptídeos/química , Linhagem Celular Tumoral , Feminino , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Neoplasias da Mama/metabolismo
6.
Adv Mater ; 36(13): e2308738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38105299

RESUMO

Subcutaneous (SC) administration of monoclonal antibodies (mAbs) is a proven strategy for improving therapeutic outcomes and patient compliance. The current FDA-/EMA-approved enzymatic approach, utilizing recombinant human hyaluronidase (rHuPH20) to enhance mAbs SC delivery, involves degrading the extracellular matrix's hyaluronate to increase tissue permeability. However, this method lacks tunable release properties, requiring individual optimization for each mAb. Seeking alternatives, physical polysaccharide hydrogels emerge as promising candidates due to their tunable physicochemical and biodegradability features. Unfortunately, none have demonstrated simultaneous biocompatibility, biodegradability, and controlled release properties for large proteins (≥150 kDa) after SC delivery in clinical settings. Here, a novel two-component hydrogel comprising chitosan and chitosan@DOTAGA is introduced that can be seamlessly mixed with sterile mAbs formulations initially designed for intravenous (IV) administration, repurposing them as novel tunable SC formulations. Validated in mice and nonhuman primates (NHPs) with various mAbs, including trastuzumab and rituximab, the hydrogel exhibited biodegradability and biocompatibility features. Pharmacokinetic studies in both species demonstrated tunable controlled release, surpassing the capabilities of rHuPH20, with comparable parameters to the rHuPH20+mAbs formulation. These findings signify the potential for rapid translation to human applications, opening avenues for the clinical development of this novel SC biosimilar formulation.


Assuntos
Anticorpos Monoclonais , Quitosana , Humanos , Camundongos , Animais , Anticorpos Monoclonais/farmacocinética , Hidrogéis , Preparações de Ação Retardada , Injeções Subcutâneas
7.
Nanoscale ; 16(5): 2347-2360, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113032

RESUMO

This article presents bioconjugates combining nanoparticles (AGuIX) with nanobodies (VHH) targeting Programmed Death-Ligand 1 (PD-L1, A12 VHH) and Cluster of Differentiation 47 (CD47, A4 VHH) for active tumor targeting. AGuIX nanoparticles offer theranostic capabilities and an efficient biodistribution/pharmacokinetic profile (BD/PK), while VHH's reduced size (15 kDa) allows efficient tumor penetration. Site-selective sortagging and click chemistry were compared for bioconjugation. While both methods yielded bioconjugates with similar functionality, click chemistry demonstrated higher yield and could be used for the conjugation of various VHH. The specific targeting of AGuIX@VHH has been demonstrated in both in vitro and ex vivo settings, paving the way for combined targeted immunotherapies, radiotherapy, and cancer imaging.


Assuntos
Gadolínio , Nanopartículas , Neoplasias , Humanos , Distribuição Tecidual , Medicina de Precisão , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA