Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 66(3): 243-249, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654329

RESUMO

Topological materials and topological phases have recently become a hot topic in condensed matter physics. In this work, we report an In-intercalated transition-metal dichalcogenide InxTaSe2 (named 112 system), a topological nodal-line semimetal in the presence of both charge density wave (CDW) and superconductivity. In the x = 0.58 sample, the 2×3 commensurate CDW (CCDW) and the 2×2 CCDW are observed below 116 and 77 K, respectively. Consistent with theoretical calculations, the spin-orbital coupling gives rise to two twofold-degenerate nodal rings (Weyl rings) connected by drumhead surface states, confirmed by angle-resolved photoemission spectroscopy. Our results suggest that the 2×2 CCDW ordering gaps out one Weyl ring in accordance with the CDW band folding, while the other Weyl ring remains gapless with intact surface states. In addition, superconductivity emerges at 0.91 K, with the upper critical field deviating from the s-wave behavior at low temperature, implying possibly unconventional superconductivity. Therefore, we think this type of the 112 system may possess abundant physical states and offer a platform to investigate the interplay between CDW, nontrivial band topology and superconductivity.

2.
J Phys Condens Matter ; 31(35): 355601, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31125978

RESUMO

Single crystals of CeSbTe with a ZrSiS-type structure were synthesized using vapor transport method. The stoichiometry is deviated from the nominal composition, which may cause some disorder in this compound. The physical properties were characterized by measuring the magnetic susceptibility, electrical resistivity, Hall resistivity and specific heat. One antiferromagnetic (AFM) transition related to Ce3+ ions was found at [Formula: see text] K, and a field-induced metamagnetic transition was observed below [Formula: see text]. The moderately enhanced Sommerfeld coefficient [Formula: see text] mJ mol-1 · K-2 and the estimated Kondo temperature [Formula: see text] K, indicate that CeSbTe is a moderately correlated AFM Kondo lattice compound with crystalline electric field effect. The carrier concentration of CeSbTe derived from the Hall coefficient is in the order of 1021 cm-3, lower than most Kondo metals, which indicates that CeSbTe is a low-carrier-density Kondo semimetal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA