Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 258: 121774, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772316

RESUMO

Sustainable and rapid production of high-valent cobalt-oxo (Co(IV)=O) species for efficiently removing organic pollutants is challenging in permoxymonosulfate (PMS) based advanced-oxidation-processes (AOPs) due to the limitation of the high 3d-orbital electronic occupancy of Co and slow conversion from Co(III) to Co(II). Herein, S-scheme BiOCl-OV/CoAl-LDH heterojunction were constructed by ultrathin BiOCl with the oxygen-vacancy (OV) self-assembled with ultrathin CoAl-LDH. OV promoted the formation of charge transfer channel (Bi-O-Co bonds) at the interface of the heterojunction and reduced electron occupation of the Co 3d-orbital to facilitate the generation of Co(IV)=O in the BiOCl-OV/CoAl-LDH/PMS/Visible-light system. S-scheme heterojunction accelerated the photogenerated electrons to allow rapid conversion of Co(III) to Co(II), promoting the fast two-electron transfer from Co(II) to Co(IV)=O. Consequently, the developed BiOCl-OV/CoAl-LDH/PMS/Visible-light system showed excellent degradation efficiency for most of organic pollutions, and exhibited very high removal capability for the actual industrial wastewater. This study provides a new insight into the evolution of Co(IV)=O and the coordinative mechanism for photocatalysis and PMS activation.


Assuntos
Cobalto , Cobalto/química , Catálise , Peróxidos/química , Oxirredução , Poluentes Químicos da Água/química
2.
J Hazard Mater ; 468: 133725, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401209

RESUMO

Clay minerals formations are potential geological barrier (host rocks) for the long-rerm storage of uranium tailing in deep geological repositories. However, there are still obstacles to the efficient retardation of uranium because of the competition between negatively charged regions at the clay minerals end face, surface and between layers, as well as low mineralization capacity. Herein, employing a simple method, we used sodium alginate (SA), an inexpensive natural polymer material, polyethylene (PE), and the natural clay minerals montmorillonite (Mt), nontronite (Nt), and beidellite (Bd) to prepare three hydrogel adsorbents, (denoted as Mt/PE-@SA, Nt/PE-@SA, and Bd/PE-@SA), respectively. The application of obtained hydrogel adsorbents further extends to uranium(VI) removal from aqueous. Due to the synergistic action of SA group and PE group, hydrogel adsorbents showed select adsorption and mineralization effect on uranium(VI), among which the maximum uranium(VI) adsorption capacity of Nt/PE-@SA was 133.3 mg·g-1 and Mt/PE-@SA exhibited strong selectivity for uranium(VI) in the presence of coexisting metal ions. Cyclic voltammetry studies indicated the mitigation and immobilization of uranium species onto adsorbents by both reduction and mineralization. Besides, the synergistic adsorption of SA and PE on clay minerals was hypothesized, and the idea was supported by structure optimizations results from Monte Carlo dynamics simulation (MCD). Three obtained hydrogel adsorbents structural model was constructed based on its physicochemical characterization, the low energy adsorption sites and adsorption energies are investigated using MCD simulation. The simulation results show that obtained hydrogel adsorbents have a strong interaction with uranium(VI), which ensures the high adsorption capacity of those materials. Most importantly, this work demonstrates a new strategy for preparing mineral-based hydrogel adsorbents with enough stability and provides a new perspective for uranium(VI) removal in complex environment.

3.
Environ Sci Pollut Res Int ; 31(13): 20234-20245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369659

RESUMO

Pyrrhotite, especially the monoclinic type, is a promising material for removing Cr (VI) from wastewater and groundwater due to its high reactivity. However, the purity of the preparation monoclinic pyrrhotite from heated natural pyrite is not high enough, and the role of possible sulfur vacancies in pyrrhotite's crystal structure has been largely ignored in the removal mechanism of Cr (VI). In this work, we characterized the phase composition changes of annealed pyrite in inert gas and prepared high-purity (~ 96%) monoclinic pyrrhotite at the optimal condition. We found that it could remove 18.6 mg/g of Cr (VI) by redox reaction, which is the best value reported of natural pyrite-derived materials so far. As the reactive media material of simulated permeable reactive barrier, the service life of the high-purity monoclinic pyrrhotite column is 297 PV, which is much longer than that of the pyrite column (50 PV). A new founding is that S2- and S vacancy play the essential role during the redox reaction of pyrrhotite and Cr (VI). Monoclinic pyrrhotite had more S vacancy than hexagonal pyrrhotite and pyrite, which explained its superior Cr (VI) removal performance.


Assuntos
Cromo , Poluentes Químicos da Água , Cromo/química , Ferro/química , Sulfetos/química , Águas Residuárias , Poluentes Químicos da Água/análise
4.
ACS Appl Mater Interfaces ; 15(29): 34698-34703, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432250

RESUMO

Rechargeable aluminum (Al) batteries have attracted considerable interest as potential large-scale energy storage technologies due to the abundance, high theoretical capacity, and high safety of Al. We report here a highly reversible Al-Mo6Se8 prototype cell with low discharge-charge hysteresis (approximately 50 mV under 30 mA g-1 at 50 °C), ultra-flat discharge plateau, and exceptional cycle stability: the reversible capacity retaining at a steady 77 mA h g-1 after more than 1800 cycles. The Al intercalation-extraction mechanism is probed with ex situ and operando XRD techniques, revealing the reversible intercalation reaction from Mo6Se8 to Al4/3Mo6Se8. The stable electrochemical performance and unambiguous intercalation mechanism of the Al-Mo6Se8 system provide an alternative for beyond-lithium battery technologies.

5.
Sci Total Environ ; 900: 165910, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37524186

RESUMO

The contamination of heavy metal lead has a serious impact on the natural environment and organisms. Among various materials for lead removal, animal bone derived hydroxyapatite has received extensive attention. However, there are different opinions among researchers regarding the mechanism of lead removal by hydroxyapatite, possibly due to varying initial lead concentrations used in different studies and lack of accuracy in the study of lead removal mechanisms. In present work, we synthesized a carbon-containing hydroxyapatite (CHAP) through pyrolysis of bovine bone with excellent lead removal efficiency, and further investigated the lead removal mechanism of CHAP under high and low initial lead concentrations by combining XRD Rietveld refinement, FTIR, XPS, HRTEM etc. methods. The results showed that under low initial Pb2+ concentration condition, the main mechanism of lead removal by CHAP was chemical precipitation (94.1 %), with small contributions of lead complexation with carbon functional groups and cation-π interactions on the amorphous carbon in CHAP, and surface adsorption on the precipitates. Under high initial Pb2+ concentration condition, chemical precipitation remained the main mechanism (74.68 %), but the contributions of the other three mechanisms increased, and ion exchange appeared in the later stage of the removal process. This study provides new insights on the lead immobilization mechanism by CHAP at different initial Pb2+ concentrations in water.

6.
Front Chem ; 11: 1137246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909709

RESUMO

Surface defect engineering is an efficient strategy to enhance the adsorption properties of materials. After calcination in argon, the adsorption capacity of natural magnetite to Pb (II) is significantly improved. The Rietveld refinement, Mössbauer spectrum, and XPS were used to prove the existence of oxygen and cation vacancies in the crystal structure of magnetite after calcination, and it is found that the vacancy content is linearly related to the adsorption amount of Pb (II). This indicates that the increase in the adsorption performance of magnetite after calcination is determined by the vacancy. The adsorption capacity increases from 8 to 26 mg/g when the calcination temperature reaches 700°C. The equilibrium adsorption process of Pb (II) on magnetite can be well fitted to the Langmuir model, and the kinetic adsorption followed a pseudo-second-order mechanism. The improvement of the adsorption performance of magnetite is mainly due to the change in its structure, which depends on the oxidation degree and surface effect of magnetite in the calcination process. This work also provides a theoretical basis for the broad application of magnetite as environmental material.

7.
Angew Chem Int Ed Engl ; 62(19): e202302050, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36914574

RESUMO

All-solid-state Z-Scheme photocatalysts have attracted significant attention due to their great potential for solar fuel production. However, delicately coupling two individual semiconductors with a charge shuttle by a material strategy remains a challenge. Herein, we demonstrate a new protocol of natural Z-Scheme heterostructures by strategically engineering the component and interfacial structure of red mud bauxite waste. Advanced characterizations elucidated that the hydrogen-induced formation of metallic Fe enabled the effective Z-Scheme electron transfer from γ-Fe2 O3 to TiO2 , leading to the significantly boosted spatial separation of photo-generated carriers for overall water splitting. To the best of our knowledge, it is the first Z-Scheme heterojunction based on natural minerals for solar fuel production. Thus our work provides a new avenue toward the utilization of natural minerals for advanced catalysis applications.

8.
ACS Appl Mater Interfaces ; 15(9): 11906-11913, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36843285

RESUMO

We synthesize and characterize a rechargeable aluminum battery cathode material composed of heterostructured Co3Se4/ZnSe embedded in a hollow carbon matrix. This heterostructure is synthesized from a metal-organic framework composite, in which ZIF-8 is grown on the surface of ZIF-67 cube. Both experimental and theoretical studies indicate that the internal electric field across the heterostructure interface between Co3Se4 and ZnSe promotes the fast transport of electron and Al-ion diffusion. As a result, the heterostructured Co3Se4/ZnSe demonstrates superior specific capacity and cycle stability compared to the single-phase Co3Se4 and ZnSe cathode materials.

9.
Heliyon ; 8(6): e09720, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35789871

RESUMO

Adsorbents for wastewater treatment have evolved from scientific adsorbents to natural adsorbents. In this study, a humic acid-bentonite polymer (HBP) composite comprising humic acid, bentonite, and anionic polyacrylamide was integrated into an anionic polyacrylamide (aPAM) polymer matrix as an adsorbent pellet with N, N-methylene-bis-acrylamide (MBA), sodium tetraborate pentahydrate and chromium chloride is used as a novel adsorbent to remove Ni2+, Cd2+ and Pb2+ ions from aqueous solution. Sorption of these ions onto HBP is studied as a function of pH, adsorbent dosage, initial metal ion concentration, humic acid, and bentonite properties to evaluate adsorption efficiency. The results showed that adsorption sharply depends on pH, metal ion concentration, and contact time, but is complemented by humic acid and bentonite properties. The adsorption increased from 8% to 94.7% in the first 30 min at respective pH values of 5.6 and 9 for (Ni2+, Cd2+, and Pb2+). The HBP sorption power decreased with increasing adsorbent dosage, while the adsorption efficiency increased in ascending order for the cations Pb2+, Ni2+ and Cd2+ with efficiencies up to 94.7%, 90.9%, and 90.2%. The experimental data for Ni2+, Pb2+ adsorption fits the Langmuir isotherm, while that for Cd2+ adsorption fits the Freundlich isotherm. HBP showed modest adsorption performance at low and high concentrations, this is attributed in large part to the humic acid and bentonite properties that affect HBP's unique performance.

10.
Sensors (Basel) ; 22(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35336569

RESUMO

The security issue of wireless communication is a common concern because of its broadcast nature, especially when the relay becomes an eavesdropper. In the orthogonal frequency division multiplexing (OFDM) relay system, when the relay is untrusted, the security of the system faces serious threats. Although there exist some resource allocation schemes in a single-carrier system with untrusted relaying, it is difficult to apply them to the multi-carrier system. Hence, a resource allocation scheme for the multi-carrier system is needed. Compared to the one-way relay system, a two-way relay system can improve the data transmission efficiency. In this paper, we consider joint secure resource allocation for a two-way cooperative OFDM system with an untrusted relay. The joint resource allocation problem of power allocation and subcarrier pairing is formulated to maximize the sum secrecy rate of the system under individual power constraints. To solve the non-convex problem efficiently, we propose an algorithm based on the alternative optimization method. The proposed algorithm is evaluated by simulation results and compared with the benchmarks in the literature. According to the numerical results, in a high signal-to-noise ratio (SNR) scenario, the proposed algorithm improves the achievable sum secrecy rate of the system by more than 15% over conventional algorithms.

11.
Sci Rep ; 11(1): 10640, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34017049

RESUMO

Methyl orange (MO) is a common anionic azo dye that is harmful to the environment and biology, so it must be treated innocuously before it can be discharged. Adsorption is an effective method to remove anionic dyes. Nanotube mineral is a natural one-dimensional adsorption material, and its unique morphology and structure endow it with good adsorption capacity. Although there are many related studies, there is a lack of in-depth discussions on the influence of nanotube's composition and structure on the adsorption of dyes and other pollutants. In this paper, two kinds of natural one-dimensional silicate minerals [halloysite nanotubes (HNTs) and chrysotile nanotubes (ChNTs)] with similar morphology but slightly different compositions and crystal structures were used as adsorbents, and MO solution was used as simulate pollutants. It is the first time to discuss in depth the influence of the composition and structure of nanotube minerals on their charge properties and the adsorption performance of methyl orange dyes. It is found that HNTs and ChNTs have different adsorption capacity due to the difference of electronegativity between Al3+ and Mg2+ in the crystal, so they possess negative and positive charges respectively in near-neutral solution, which leads to the adsorption capacity of MO by ChNTs with positive charges which is greater than that of HNTs.

12.
Sci Rep ; 11(1): 2607, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510244

RESUMO

The improper handling of smelting slag will seriously pollute the environment, and the unfilled roof of the goaf of the mine will threaten the safety of the mine. Expansion materials have attracted more and more attention because of their excellent properties. In this paper, copper-nickel smelting slag that has some active ingredients of gelling is used instead of traditional aggregate and some part of cement in order to reduce its pollution to the environment and its costs. For safety reasons, hydrogen peroxide was chosen as the foaming agent. Sodium silicate and hexadecyl trimethyl ammonium bromide (CTAB) are used as additives. Our results showed that after 28 days of curing, the material has better mechanical properties and the early compressive strength of the material was enhanced by sodium silicate. The efficiency of foaming was improved by CTAB. It also proves that copper-nickel smelting slag can be used in expansion material. At the same time, the utilization rate of the copper-nickel smelting slag of this formula can reach 70%, reduce its pollution to the environment.

13.
Sci Rep ; 9(1): 18734, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822737

RESUMO

A novel cerium doped compounds Mn3Gd7-xCex(SiO4)6O1.5 with an apatite structure was found and used to achieve high-efficiency degradation of tetracycline in aqueous solution. The catalysts were characterized by XRD, XPS, EDS and other techniques. The characteristic results indicated that the catalytic activity of the compound was improved due to the introduction of Ce in the structure, because Ce3+ which was stably present in the apatite structure can serve as an active site for the reaction, and in addition, there was a high presence between Ce4+ and Ce3+ on the surface of the catalyst. The redox potential and high oxygen storage capacity were also beneficial for the catalytic reaction. The results of free radical capture indicated that both superoxide radicals and hydroxyl radicals participated in the catalytic oxidation process and played an important role in the reaction. The decomposition of tetracycline followed the pseudo second-order reaction kinetics. In addition, the catalyst exhibited long-term stability and low metal leaching during the reaction, which indicated that the novel cerium-doped apatite structure material could be a promising wastewater treatment material.

14.
Front Chem ; 7: 437, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31259169

RESUMO

Although the electrochemical properties of porous LiMn2O4 microspheres are usually improved compared to those of irregular LiMn2O4 particles, the effects of the different synthesis conditions on the preparation of the porous LiMn2O4 microspheres are rarely discussed in detail. In the present work, porous LiMn2O4 microspheres were successfully synthesized by using molten LiOH and porous Mn2O3 spheres as a template. Multiple factors were considered in the preparation process, including reagent concentration, pH, adding mode, heating time, etc. The morphology of the MnCO3 template was crucial for the preparation of porous LiMn2O4 microspheres and it was mainly affected by the concentration of reactants and the pH value of the solution during the precipitation process. During the lithiation of Mn2O3 microspheres, the heating temperature and the ratio between Mn2O3 and lithium salt were the most significant variables in terms of control over the morphology and purity of the LiMn2O4 microspheres. Furthermore, we demonstrated that the porous LiMn2O4 microspheres presented better rate capability and cyclability compared to commercial LiMn2O4 powder as cathode materials for lithium-ion batteries (LIBs). This study not only highlights the shape-controllable synthesis of LiMn2O4 microspheres as promising cathode materials, but also provides some useful guidance for the synthesis of porous LiMn2O4 microspheres and other LIB' electrode materials.

15.
Langmuir ; 35(17): 5684-5692, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30964687

RESUMO

As an energy carrier, the phase change material can enhance the efficiency of an energy source and reduce its load. The present paper describes the assembly of the energy carrier molecule [stearic acid (SA)] into the interlayer spacing of montmorillonite (Mt). A novel inorganic/organic composite energy storage material was prepared, which effectively reduces the phase change temperature of the energy storage molecule. Through acid treatment, the Si4+/Al3+ ratio of Mt can be regulated to obtain a series of Mts with different layer charges. As a result, a controllable assembly of energy storage molecule, SA, into the interlayer spacing of Mts with different layer charges was accomplished. By controlling the layer charges of Mt arrangement morphology and interactive force of SA molecules in the interlayer, spacing of Mt can be changed effectively. The phase change temperature (exothermic reaction) reduces from 50.5 to 32 °C compared with the SA molecules, which are used to control phase change temperature of the energy storage material. The study presents a SA/Mt energy storage material that can aid in further development in the field of energy storage construction materials.

16.
Materials (Basel) ; 12(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669374

RESUMO

Gellable composite materials (GCM) were prepared from a smelting slag of copper and nickel deposits and cement, and activated using gypsum and chemical activators. The effects of material ratio, dosage of chemical activators, and gypsum on the mechanical properties of GCM were studied. Our results showed that the chemical activators of Na2SO4, Na2SiO3, NaOH, and Na2CO3 could improve the compressive strength of the GCM. Considering the market cost and ease operation, the compressive strength of the GCM could be significantly improved with 2% Na2SO4. The experiment results also showed that the compound chemical activator could improve the compressive strength of gelled material. The strength of GCM reaches 41.6 MPa when 2% gypsum and 80% of smelting slags of copper and nickel deposits were used, which met the national standards requirements of GCM. As such, it is expected that a large amount of copper and nickel mining smelting slag could be utilized for the production of cementitious materials.

17.
RSC Adv ; 9(23): 13088-13095, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35520806

RESUMO

One-dimensional K-MnO2 nanorods were prepared by a wet chemical process. Dopamine hydrochloride (PDA) layers with various thicknesses were coated and finally, the composites were filled in a poly(vinylidene fluoride) (PVDF) matrix using the hot-molding procedure. The complex permittivity and permeability of the K-MnO2@PDA/PVDF composites could be adjusted by reactant amount ratios and filler contents. The minimum reflection loss could reach -49.4 dB and an effective absorption bandwidth (<-10 dB) covering 11.12 GHz was achieved with 20% filler content when the reactant amount ratio between K-MnO2 and PDA was 4 : 0.375, which was derived from effective internal polarization processes. It is expected that these novel composites can be used as high-performance microwave absorbers.

18.
J Hazard Mater ; 370: 91-97, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28954700

RESUMO

Antibiotics are extremely effective against bacterial infections due to their selective toxicity for bacteria rather than the host. Extensive use and misuse of antibiotics resulted in significant increases in antibiotic levels in aquatic and soil environments. Bacteria exposed to antibiotics with low concentrations may develop antibiotic resistance. In this study a swelling 2:1 clay mineral montmorillonite (MMT) and a non-swelling 1:1 clay mineral kaolinite were premixed with tetracycline (TC) of varying concentrations. The gram-negative bacteria Escherichia coli (E. coli) and Salmonella enterica (S. enterica) of both TC sensitive and TC resistant strains were tested for their growth in the presence TC-loaded clay minerals of different amounts and under different physico-chemical conditions. The antimicrobial activity of TC was significantly decreased in the presence of MMT. In the absence of MMT, no bacteria growth was found at a TC concentration 0.25mg/mL and above. On the contrast, in the presence of MMT, 50% growth was still found for a TC resistant E. coli at a TC concentration of 5mg/g. The influence of kaolinite was to a lesser degree. These results suggest that antimicrobial agents present in clayey soils could be responsible for possible mutation of bacteria of high antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Bentonita/química , Escherichia coli/efeitos dos fármacos , Caulim/química , Salmonella enterica/efeitos dos fármacos , Tetraciclina/farmacologia , Antibacterianos/química , Farmacorresistência Bacteriana , Escherichia coli/crescimento & desenvolvimento , Salmonella enterica/crescimento & desenvolvimento , Solo/química , Microbiologia do Solo , Tetraciclina/química
19.
Materials (Basel) ; 11(11)2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405090

RESUMO

Nano zero-valent iron has drawn great attention for the degradation of organic dyes due to its high reactivity, large specific surface area, lightweight, and magnetism. However, the aggregation and passivation of iron nanoparticles may prohibit the wide use of it. A new composite material was prepared by loading nano zero-valent iron (nZVI) on montmorillonite (MMT) to overcome the above shortcomings and it was further used for the removal of Rhodamine 6G (Rh 6G) under microwave treatment in the present work. The effects of various parameters, including the initial concentration of Rh 6G, microwave power, and pH value were investigated. The new composite material (nZVI/MMT) showed an excellent degradation ability for removing Rh 6G, and the removal amount reached 500 mg/g within 15 min. The degradation rate reached 0.4365 min-1, significantly higher than most previous reports using other removal methods for Rh 6G.

20.
Front Chem ; 6: 463, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356813

RESUMO

Nanoscale zero valent iron has been a widespread concern in various fields due to its large specific surface area and high reactivity. However, nanoscale zero valent iron (nZVI) is very likely to aggregate and be oxidized, which limit its wide application in industry. Most clay minerals have a large adsorption capacity of cations due to their negative charges and high specific surface areas. In the present work, nZVI was loaded onto two typical clay minerals: kaolinite and sepiolite, to inhibit its oxidation and aggregation. The composites were applied to degrade Rhodamine 6G (Rh 6G) under microwave irradiation. The effects of pH value and microwave power on degradation were studied. The results showed that the removal amount of Rh 6G by nZVI/kaolinite was 110 mg/g in 15 min, while it reached 300 mg/g by nZVI/sepiolite. The difference between these two composites was mostly determined by the structures of these two clay minerals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA