Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
ACS Omega ; 9(19): 21270-21275, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764683

RESUMO

Using low viscosity engine oil is one of the most economical and easily achievable ways to improve fuel economy. Base oil is a main component in low viscosity engine oils, and therefore, the separation and identification of its are of great significance for oil product developers to prepare high-performance lubricants. However, the extraction methods reported for base oils mainly adopt membrane dialysis, which not only fails to completely separate the base oil but also wastes a large amount of solvent. The reason for this result is that the concentration of substances inside and outside the membrane cannot always be in an imbalanced state of permeation resulting from manual operation. Additionally, most studies primarily focus on the characterization of base oil components, while there are few reports on grade identification. For the above reasons, an economically effective separation technique of base oil from low viscosity gasoline engine oil SN 0W-16 is successfully established by combining improved Soxhlet extraction and a column chromatography separation method. By applying this method, the yield of extracting base oil generally exceeds 96%, and the solvent can also save more than 3 times. Besides, an exclusion method is built through several simple characterization steps including viscosity index (VI), FT-IR, size-exclusion chromatography (SEC), and hydrocarbon composition, which can quickly identify the American Petroleum Institute (API) grade and brand of the base oils.

2.
Int J Nanomedicine ; 19: 901-915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38293609

RESUMO

Background: Diabetic nephropathy (DN) is a prevalent complication of diabetes mellitus and constitutes the primary cause of mortality in affected patients. Previous studies have shown that placental mesenchymal stem cells (PL-MSCs) can alleviate kidney dysfunction in animal models of DN. However, the limited ability of mesenchymal stem cells (MSCs) to home to damaged sites restricts their therapeutic potential. Enhancing the precision of PL-MSCs' homing to target tissues is therefore vital for the success of cell therapies in treating DN. Methods: We developed Fe3O4 coated polydopamine nanoparticle (NP)-internalized MSCs and evaluated their therapeutic effectiveness in a mouse model of streptozotocin- and high-fat diet-induced DN, using an external magnetic field. Results: Our study confirmed that NPs were effectively internalized into PL-MSCs without compromising their intrinsic stem cell properties. The magnetic targeting of PL-MSCs notably improved their homing to the kidney tissues in mice with DN, resulting in enhanced kidney function compared to the transplantation of PL-MSCs alone. Furthermore, the anti-inflammatory and antifibrotic attributes of PL-MSCs played a role in the recovery of kidney function and structure. Conclusion: These results demonstrate that magnetically targeted therapy using PL-MSCs is a promising approach for treating diabetic nephropathy.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Gravidez , Feminino , Camundongos , Animais , Nefropatias Diabéticas/terapia , Placenta , Modelos Animais de Doenças , Transplante de Células-Tronco Mesenquimais/métodos
3.
Artigo em Chinês | MEDLINE | ID: mdl-38114314

RESUMO

Laryngeal cyst is a cystic lesion occurring in the laryngeal cavity. Large laryngeal cyst in infants and young children can cause laryngeal wheezing and other upper airway obstruction symptoms. In severe cases, it can be even life-threatening and requires timely surgical treatment. Currently, there is a lack of unified clinical treatment strategy for this disease.This article summarizes the surgical methods, the advantages and disadvantages of various surgical methods for laryngeal cysts in recent years. It is recommended that needle aspiration, partial cyst wall resection, radical cyst dissection, transoral robotic surgery or external approach cyst resection should be selected through full communication and evaluation to clarify the extent of the lesion scope and the advantages and disadvantages of surgery.


Assuntos
Cistos , Doenças da Laringe , Laringe , Procedimentos Cirúrgicos Robóticos , Lactente , Criança , Humanos , Pré-Escolar , Cistos/cirurgia , Cistos/diagnóstico , Doenças da Laringe/cirurgia , Doenças da Laringe/diagnóstico , Laringe/cirurgia , Biópsia por Agulha
4.
Infect Drug Resist ; 16: 6975-6981, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928606

RESUMO

Background: Tannerella forsythia is a gram-negative anaerobic bacterium commonly found in the oral cavity. It is among the common pathogenic bacteria associated with gingivitis, chronic periodontitis, and aggressive periodontitis. However, there is currently no literature discussing lung abscesses primarily caused by T. forsythia infection. Presentation: This article presents the case of a 55-year-old male with a massive lung abscess. The patient underwent ultrasound-guided percutaneous drainage, and the sample was sent for pathogen metagenomic next-generation sequencing (mNGS) testing. The test indicated that the lung abscess was primarily caused by T. forsythia infection. A literature review was conducted to understand the characteristics of this pathogen as well as its clinical features and suitable treatment approaches. Conclusion: Currently, there is no literature specifically mentioning T. forsythia as a primary pathogen causing lung abscesses. This anaerobic bacterium is commonly found in the oral cavity and is difficult to cultivate using routine culture methods. mNGS emerges as a value diagnostic method for identifying this pathogen. Treatment recommendations include drainage and antibiotic selection encompassing common periodontal pathogens such as red complex bacteria and Actinomyces.

5.
Fish Shellfish Immunol ; 143: 109215, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951320

RESUMO

Marine lectins are a group of proteins that possess specific carbohydrate recognition and binding domains. They exhibit various activities, including antimicrobial, antitumor, antiviral, and immunomodulatory effects. In this study, a novel galectin-binding lectin gene named PFL-96 (GenBank: OQ561753.1) was cloned from Pinctada fucata. The PFL-96 gene has an open reading frame of 324 base pairs (bp) and encodes a protein comprising 107 amino acids. The protein has a molecular weight of 11.95 kDa and an isoelectric point of 9.27. It contains an N-terminal signal peptide and a galactose-binding lectin domain. The sequence identity to lectin proteins from fish, echinoderms, coelenterates, and shellfish ranges from 31.90 to 40.00 %. In the phylogenetic analysis, it was found that the PFL-96 protein is closely related to the lectin from Pteria penguin. The PFL-96 recombinant protein exhibited coagulation activity on 2 % rabbit red blood cells at a concentration of ≥8 µg/mL. Additionally, it showed significant hemolytic activity at a concentration of ≥32 µg/mL. The PFL-96 recombinant protein exhibited significant antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Candida albicans, and Vibrio alginolyticus, with minimum inhibitory concentrations (MIC) of 4, 8, 16, and 16 µg/mL, respectively. The minimum bactericidal concentrations (MBC) were determined to be 8, 16, 32, and 32 µg/mL, respectively. Furthermore, the PFL-96 recombinant protein exhibited inhibitory effects on the proliferation of Hela tumor cells, HepG2 tumor cells, and C666-1 tumor cells, with IC50 values of 7.962, 8.007, and 9.502 µg/mL, respectively. These findings suggest that the recombinant protein PFL-96 exhibits significant bioactivity in vitro, contributing to a better understanding of the active compounds found in P. fucata. The present study establishes a fundamental basis for further investigation into the mechanism of action and structural optimization of the recombinant protein PFL-96. The aim is to develop potential candidates for antibacterial and anti-tumor agents.


Assuntos
Pinctada , Animais , Coelhos , Pinctada/metabolismo , Sequência de Aminoácidos , Filogenia , Clonagem Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/metabolismo , Galectinas/genética , Galectinas/metabolismo , Antibacterianos/metabolismo
6.
NPJ Biofilms Microbiomes ; 9(1): 26, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202425

RESUMO

Quorum cheating, a socio-microbiological process that is based on mutations in cell density-sensing (quorum-sensing) systems, has emerged as an important contributor to biofilm-associated infection in the leading human pathogen Staphylococcus aureus. This is because inactivation of the staphylococcal Agr quorum-sensing system leads to pronounced biofilm formation, increasing resistance to antibiotics and immune defense mechanisms. Since biofilm infections in the clinic usually progress under antibiotic treatment, we here investigated whether such treatment promotes biofilm infection via the promotion of quorum cheating. Quorum cheater development was stimulated by several antibiotics used in the treatment of staphylococcal biofilm infections more strongly in biofilm than in the planktonic mode of growth. Sub-inhibitory concentrations of levofloxacin and vancomycin were investigated for their impact on biofilm-associated (subcutaneous catheter-associated and prosthetic joint-associated infection), where in contrast to a non-biofilm-associated subcutaneous skin infection model, a significant increase of the bacterial load and development of agr mutants was observed. Our results directly demonstrate the development of Agr dysfunctionality in animal biofilm-associated infection models and reveal that inappropriate antibiotic treatment can be counterproductive for such infections as it promotes quorum cheating and the associated development of biofilms.


Assuntos
Biofilmes , Infecções Estafilocócicas , Animais , Humanos , Percepção de Quorum/genética , Staphylococcus , Staphylococcus aureus/genética , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia
7.
Front Physiol ; 14: 1098893, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008008

RESUMO

Objective: To analyze the cranial computed tomography (CT) imaging features of patients with primary ciliary dyskinesia (PCD) who have exudative otitis media (OME) and sinusitis using a deep learning model for early intervention in PCD. Methods: Thirty-two children with PCD diagnosed at the Children's Hospital of Fudan University, Shanghai, China, between January 2010 and January 2021 who had undergone cranial CT were retrospectively analyzed. Thirty-two children with OME and sinusitis diagnosed using cranial CT formed the control group. Multiple deep learning neural network training models based on PyTorch were built, and the optimal model was trained and selected to observe the differences between the cranial CT images of patients with PCD and those of general patients and to screen patients with PCD. Results: The Swin-Transformer, ConvNeXt, and GoogLeNet training models had optimal results, with an accuracy of approximately 0.94; VGG11, VGG16, VGG19, ResNet 34, and ResNet 50, which are neural network models with fewer layers, achieved relatively strong results; and Transformer and other neural networks with more layers or neural network models with larger receptive fields exhibited a relatively weak performance. A heat map revealed the differences in the sinus, middle ear mastoid, and fourth ventricle between the patients with PCD and the control group. Transfer learning can improve the modeling effect of neural networks. Conclusion: Deep learning-based CT imaging models can accurately screen for PCD and identify differences between the cranial CT images.

9.
J Extracell Vesicles ; 11(4): e12212, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35384360

RESUMO

Bacterial membrane vesicles (MVs) have recently gained much attention and have been shown to carry a wide diversity of secreted bacterial components. However, it is poorly understood whether MV carriage is an indispensable requirement for a cargo's function. Bacteriocins as weapons of bacterial warfare shape the composition of microbial communities. Many bacteriocins have pronounced hydrophobicity that is imposed by their mechanism of action, but how they diffuse through aqueous environments to reach their target competitors is not known. Here we show that antimicrobial competitive activity of an exemplary hydrophobic bacteriocin of the thiopeptide antibiotic family, micrococcin P1 (MP1), is dependent on incorporation into MVs, which were found to carry MP1 at high concentrations. In contrast, MP1 without MV association was poorly active due to low solubility. Furthermore, we provide previously unavailable evidence that MVs fuse with a Gram-positive bacterium's cytoplasmic membrane, in this case to deliver a bacteriocin to its intracellular target. Our findings demonstrate how bacteria overcome the problem associated with secreting hydrophobic small molecules and delivering them to their target and show that MVs have a key function in bacterial warfare. Furthermore, our study provides hitherto rare evidence that MVs provide an essential rather than merely accessory function in bacterial physiology.


Assuntos
Bacteriocinas , Antibacterianos/farmacologia , Bactérias , Bacteriocinas/farmacologia
10.
J Antimicrob Chemother ; 77(3): 604-614, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34918102

RESUMO

OBJECTIVES: Oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) is clinically significant and isolated globally but the mechanism of its occurrence remains indistinct. We sought to assess the mechanism of regulating oxacillin susceptibility in OS-MRSA isolates by evaluating the evolutionary dynamics of OS-MRSA and the discrepancies of mecA-regulating genes in OS-MRSA and oxacillin-resistant MRSA (OR-MRSA). METHODS: Nine OS-MRSA isolates and 77 OR-MRSA isolates were sequenced using next-generation sequencing (NGS) platforms. Two representative OS-MRSA isolates (ET-13, ET-16) were induced to be oxacillin resistant and sequenced also. OS-MRSA ET-16 and its counterpart isolate with induced oxacillin resistance, ET-16I, and their mutants were used to confirm the role of the bla system in regulating methicillin susceptibility. Oxacillin MICs were determined using Etests. Expression of mecA and blaR1 was quantified by quantitative RT-PCR. RESULTS: A deletion in blaR1 in most OS-MRSA isolates (7/9; 77.78%) was found using NGS data, and overexpression of OR-blaR1 in OS-MRSA isolate ET-16 restored its oxacillin resistance. OS-MRSA could be induced to be oxacillin resistant, while growth was suppressed in the induced isolates. Plasmid containing the bla locus was lost in most induced isolates during the induction process and complementation of blaR1-blaI from OS-MRSA ET-16 to the induced isolate ET-16I converted its oxacillin susceptibility. CONCLUSIONS: Deletion in blaR1 resulted in oxacillin susceptibility in OS-MRSA, and loss of the bla regulator in OS-MRSA restored oxacillin resistance. The bla system played a crucial role in regulating oxacillin susceptibility in OS-MRSA isolates.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Humanos , Testes de Sensibilidade Microbiana , Oxacilina/farmacologia , Proteínas de Ligação às Penicilinas/genética , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/genética
11.
Biomater Sci ; 9(3): 1048-1049, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33399142

RESUMO

Correction for 'In vivo migration of Fe3O4@polydopamine nanoparticle-labeled mesenchymal stem cells to burn injury sites and their therapeutic effects in a rat model' by Xiuying Li et al., Biomater. Sci., 2019, 7, 2861-2872, DOI: 10.1039/C9BM00242A.

12.
Emerg Microbes Infect ; 10(1): 109-122, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33355507

RESUMO

Staphylococcus aureus (S. aureus) is a clinical pathogen of great significance causing metastatic or complicated infections. ST5 clonotype isolates have dominated S. aureus infections for more than 10 years in Shanghai, China, and the proportion of methicillin-susceptible S. aureus (MSSA) has remarkably increased in the past decades. By whole-genome sequencing (WGS) 121 ST5 clonotype S. aureus isolates using next-generation sequencing (NGS) platforms and characterizing the evolutionary dynamics of ST5 linages, we found that MSSA evolved independently, making it a subtype differed from other MRSA clones. Drug resistance gene analysis by using the NGS data demonstrated that ST5 clonotype MRSA might be more tolerant under the threat of antimicrobials, which was confirmed in further in vitro susceptibility tests. However, MSSA subtype isolates exhibited relatively high virulence upon the analysis of virulence factors. Furthermore, MSSA subtype isolates displayed higher hemolysis capacity and higher ability to adhere to epithelial cells including A549 human alveolar epithelial cells and HaCaT human skin keratinocytes, caused more severe infections in murine abscess model. With its high virulence and enhanced magnitude in the past decades, the ST5 MSSA subtype poses a serious clinical threat hence more attention should be paid to the prevention and control.


Assuntos
Anti-Infecciosos/farmacologia , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/classificação , Staphylococcus aureus/patogenicidade , Sequenciamento Completo do Genoma/métodos , Células A549 , Animais , Aderência Bacteriana , Linhagem Celular , China/epidemiologia , Simulação por Computador , Modelos Animais de Doenças , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Prevalência , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Fatores de Virulência
13.
J Infect Dis ; 223(10): 1766-1775, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32937658

RESUMO

Staphylococcal enterotoxin B (SEB), which is produced by the major human pathogen, Staphylococcus aureus, represents a powerful superantigenic toxin and is considered a bioweapon. However, the contribution of SEB to S. aureus pathogenesis has never been directly demonstrated with genetically defined mutants in clinically relevant strains. Many isolates of the predominant Asian community-associated methicillin-resistant S. aureus lineage sequence type (ST) 59 harbor seb, implying a significant role of SEB in the observed hypervirulence of this lineage. We created an isogenic seb mutant in a representative ST59 isolate and assessed its virulence potential in mouse infection models. We detected a significant contribution of seb to systemic ST59 infection that was associated with a cytokine storm. Our results directly demonstrate that seb contributes to S. aureus pathogenesis, suggesting the value of including SEB as a target in multipronged antistaphylococcal drug development strategies. Furthermore, they indicate that seb contributes to fatal exacerbation of community-associated methicillin-resistant S. aureus infection.


Assuntos
Enterotoxinas , Infecções Estafilocócicas , Animais , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Infecções Estafilocócicas/patologia , Virulência
14.
Biomater Sci ; 8(19): 5362-5375, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32869785

RESUMO

Diabetes mellitus (DM) is characterized by the irreversible destruction of insulin-secreting pancreatic ß-islet cells and requires life-long exogenous insulin therapy. Umbilical cord Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) have been shown to improve islet function in animal models of diabetes. However, inadequate MSC homing to injured sites has limited their efficacy. Since efficient cell therapy heavily relies on appropriate homing to target tissues, increasing the specificity to the target organ and the extent of homing of the injected WJ-MSCs is paramount to successful clinical outcomes. Therefore, in this study, we synthesized Fe3O4@polydopamine nanoparticle (NP)-labeled MSCs and evaluated their therapeutic efficacy in a clinically relevant rat model of streptozotocin-induced diabetes using an external magnetic field. We found that NPs were successfully incorporated into WJ-MSCs and did not negatively affect stem cell properties. Magnetic targeting of WJ-MSCs contributed to long-term cell retention in pancreatic tissue and improved the islet function of diabetic rats, compared to injection of WJ-MSC alone. In addition, anti-inflammatory effects and the anti-apoptotic capacity of WJ-MSCs appeared to play a major role in the functional and structural recovery of the pancreas. Thus, therapy relying on the magnetic targeting of WJ-MSCs may serve as an effective approach for DM treatment.


Assuntos
Diabetes Mellitus Experimental , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Nanopartículas , Geleia de Wharton , Animais , Diferenciação Celular , Células Cultivadas , Diabetes Mellitus Experimental/terapia , Humanos , Indóis , Polímeros , Ratos , Estreptozocina , Cordão Umbilical
15.
Int J Nanomedicine ; 15: 5645-5659, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848391

RESUMO

INTRODUCTION: Mesenchymal stem cells (MSCs) are a promising resource for tissue regeneration and repair. However, their clinical application is hindered by technical limitations related to MSC enrichment at the target sites. METHODS: MSCs were labeled with magnetic Fe3O4 nanoparticles (NPs). We analyzed the effects of NP on cell proliferation, stem cell characteristics, and cytokine secretion. Furthermore, we induced NP-labeled MSC migration with an external magnetic field toward laser-induced skin wounds in rats and evaluated the associated anti-inflammatory effects. RESULTS: Fe3O4 NP application did not adversely affect MSC characteristics. Moreover, Fe3O4 NP-labeled MSCs presented increased anti-inflammatory cytokine and chemokine production compared with unlabeled MSCs. Furthermore, MSCs accumulated at the injury site and magnetic targeting promoted NP-labeled MSC migration toward burn injury sites in vivo. On day 7 following MSC injection, reduced inflammation and promoted angiogenesis were observed in the magnetically targeted MSC group. In addition, anti-inflammatory factors were upregulated, whereas pro-inflammatory factors were downregulated within the magnetically targeted MSC group compared with those in the PBS group. CONCLUSION: This study demonstrates that magnetically targeted MSCs contribute to cell migration to the site of skin injury, improve anti-inflammatory effects and enhance angiogenesis compared with MSC injection alone. Therefore, magnetically targeted MSC therapy may be an effective treatment approach for epithelial tissue injuries.


Assuntos
Queimaduras/terapia , Lasers/efeitos adversos , Nanopartículas de Magnetita/química , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/química , Animais , Queimaduras/etiologia , Queimaduras/patologia , Movimento Celular , Proliferação de Células , Citocinas/metabolismo , Campos Magnéticos , Nanopartículas de Magnetita/uso terapêutico , Masculino , Ratos Wistar , Pele/patologia , Cicatrização
16.
J Nanobiotechnology ; 18(1): 113, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32799868

RESUMO

Human mesenchymal stem cell (MSC)-derived exosomes (Exos) are a promising therapeutic agent for cell-free regenerative medicine. However, their poor organ-targeting ability and therapeutic efficacy have been found to critically limit their clinical applications. In the present study, we fabricated iron oxide nanoparticle (NP)-labeled exosomes (Exo + NPs) from NP-treated MSCs and evaluated their therapeutic efficacy in a clinically relevant model of skin injury. We found that the Exos could be readily internalized by human umbilical vein endothelial cells (HUVECs), and could significantly promote their proliferation, migration, and angiogenesis both in vitro and in vivo. Moreover, the protein expression of proliferative markers (Cyclin D1 and Cyclin A2), growth factors (VEGFA), and migration-related chemokines (CXCL12) was significantly upregulated after Exo treatment. Unlike the Exos prepared from untreated MSCs, the Exo + NPs contained NPs that acted as a magnet-guided navigation tool. The in vivo systemic injection of Exo + NPs with magnetic guidance significantly increased the number of Exo + NPs that accumulated at the injury site. Furthermore, these accumulated Exo + NPs significantly enhanced endothelial cell proliferation, migration, and angiogenic tubule formation in vivo; moreover, they reduced scar formation and increased CK19, PCNA, and collagen expression in vivo. Collectively, these findings confirm the development of therapeutically efficacious extracellular nanovesicles and demonstrate their feasibility in cutaneous wound repair.


Assuntos
Exossomos , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais , Pele/lesões , Cicatrização/efeitos dos fármacos , Animais , Células Cultivadas , Exossomos/química , Exossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Wistar , Pele/metabolismo
17.
Front Microbiol ; 11: 908, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528428

RESUMO

Vancomycin, teicoplanin, and linezolid are the major treatment options for methicillin-resistant Staphylococcus aureus (MRSA). The phenomenon of progressive increase in the value of vancomycin minimum inhibitory concentration (MIC) for S. aureus (i.e., vancomycin MIC "creep"), has been reported; however, it is still a controversial concept because the results of research remain inconclusive. In this study, we conducted a retrospective epidemiologic investigation for more than 10 years to elucidate the dynamic changes of the MICs of vancomycin, teicoplanin, and linezolid in S. aureus in a central teaching hospital in Shanghai, China. A total of 2911 S. aureus isolates was recovered from 2008 to 2018, to which the MICs of three antimicrobials were tested by the E-test method and subsequently correlated with the characteristics of oxacillin susceptibility, clonotypes, and antimicrobial consumption during the study period. The proportion of MRSA dramatically decreased from 2008 to 2018 (from 84 to 49%, p < 0.001). Vancomycin MIC decline was identified both in MRSA and methicillin-sensitive S. aureus (MSSA) (both with p < 0.001), and both the dominating MRSA clone ST5 and pre-dominating MRSA clone ST239 displayed vancomycin MIC decline (p < 0.001, p = 0.040), while teicoplanin MIC decline was only identified in MRSA (p = 0.037). Linezolid MIC creep was identified in total S. aureus (p < 0.001), but linezolid in MRSA as well as teicoplanin and linezolid in MSSA displayed no statistically distinct trends of MIC creep or decline. Clinical consumption of linezolid increased significantly from 2012 to 2018 (p = 0.003), which correlated with vancomycin MIC decline in S. aureus (p = 0.005). The results of this study clearly demonstrate the dynamic changes of the MICs of these three primary antimicrobials in S. aureus, and suggest that changes in clinical antibiotic use may affect bacterial resistance.

18.
Microbiome ; 8(1): 85, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503672

RESUMO

BACKGROUND: The alarming spread of antimicrobial resistance requires the development of novel anti-infective drugs. Despite the recent research focus on the human microbiome and its likely value to understand and exploit inter-bacterial inhibitory phenomena as a source for antimicrobial strategies, the human microbiota has barely been investigated for the purpose of drug development. RESULTS: We performed a large screen analyzing over 3000 human skin isolates to evaluate bacterial competition within the human skin microbiota as a basis for the development of anti-infective therapeutics. We discovered a Staphylococcus hominis strain with strong and broad activity against Gram-positive pathogens that was mediated by the bacteriocin micrococcin P1 (MP1). In "probiotic" approaches, this strain led to reduced Staphylococcus aureus infection and accelerated closure of S. aureus-infected wounds. Furthermore, we used a nanoparticle strategy to overcome the physico-chemical limitations often encountered with natural substances such as MP1 and demonstrate a significant reduction of S. aureus infection by MP1-loaded nanoparticles. CONCLUSIONS: Our study gives examples of how analysis of bacterial interactions in the human microbiota can be explored for the development of novel, effective anti-infective strategies. Video Abstract.


Assuntos
Anti-Infecciosos , Antibiose , Microbiota , Pele , Animais , Anti-Infecciosos/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Nanopartículas , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Staphylococcus hominis/fisiologia , Cicatrização , Infecção dos Ferimentos/microbiologia
19.
J Bacteriol ; 202(15)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457050

RESUMO

In Enterococcus faecalis, the site 2 protease Eep generates sex pheromones, including cAM373. Intriguingly, in Staphylococcus aureus, a peptide similar to cAM373, named cAM373_SA, is produced from the camS gene. Here, we report that the staphylococcal Eep homolog is not only responsible for the production of cAM373_SA but also critical for staphylococcal virulence. As with other Eep proteins, the staphylococcal Eep protein has four transmembrane (TM) domains, with the predicted zinc metalloprotease active site (HEXXH) in the first TM domain. eep deletion reduced the cAM373_SA activity in the culture supernatant to the level of the camS deletion mutant. It also markedly decreased the cAM373 peptide peak in a high-performance liquid chromatography (HPLC) analysis. Proteomics analysis showed that Eep affects the production and/or the release of diverse proteins, including the signal peptidase subunit SpsB and the surface proteins SpA, SasG, and FnbA. eep deletion decreased the adherence of S. aureus to host epithelial cells; however, the adherence of the eep mutant was increased by overexpression of the surface proteins SpA, SasG, and FnbA. eep deletion reduced staphylococcal resistance to killing by human neutrophils as well as survival in a murine model of blood infection. The overexpression of the surface protein SpA in the eep mutant increased bacterial survival in the liver. Our study illustrates that in S. aureus, Eep not only generates cAM373_SA but also contributes to the survival of the bacterial pathogen in the host.IMPORTANCE The emergence of multidrug-resistant Staphylococcus aureus makes the treatment of staphylococcal infections much more difficult. S. aureus can acquire a drug resistance gene from other bacteria, such as Enterococcus faecalis Intriguingly, S. aureus produces a sex pheromone for the E. faecalis plasmid pAM373, raising the possibility that S. aureus actively promotes plasmid conjugation from E. faecalis In this study, we found that the staphylococcal Eep protein is responsible for sex pheromone processing and contributes to the survival of the bacteria in the host. These results will enhance future research on the drug resistance acquisition of S. aureus and can lead to the development of novel antivirulence drugs.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeo Hidrolases/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeos/genética , Peptídeos/metabolismo , Domínios Proteicos , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Virulência
20.
Front Cell Infect Microbiol ; 10: 578098, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425775

RESUMO

Background: The prevalence of Clostridium difficile causes an increased morbidity and mortality of inpatients, especially in Europe and North America, while data on C. difficile infection (CDI) are limited in China. Methods: From September 2014 to August 2019, 562 C. difficile isolates were collected from patients and screened for toxin genes. Multilocus sequence typing (MLST) and antimicrobial susceptibility tests by E-test and agar dilution method were performed. A case group composed of patients infected with sequence type (ST) 81 C. difficile was compared to the non-ST81 infection group and non CDI diarrhea patients for risk factor and outcome analyses. Results: The incidence of inpatients with CDI was 7.06 cases per 10,000 patient-days. Of the 562 C. difficile isolates, ST81(22.78%) was the predominant clone over this period, followed by ST54 (11.21%), ST3 (9.61%), and ST2 (8.72%). Toxin genotype tcdA+tcdB+cdt- accounted for 50.18% of all strains, while 29.54% were tcdA-tcdB+cdt- genotypes. Overall, no isolate was resistant to vancomycin, teicoplanin or daptomycin, and resistance rates to meropenem gradually decreased during these years. Although several metronidazole-resistant strains were isolated in this study, the MIC values decreased during this period. Resistance rates to moxifloxacin and clindamycin remained higher than those to the other antibiotics. Among CDI inpatients, longer hospitalization, usage of prednisolone, suffering from chronic kidney disease or connective tissue diseases and admission to emergency ward 2 or emergency ICU were significant risk factors for ST81 clone infection. All-cause mortality of these CDI patients was 4.92%(n=18), while the recurrent cases accounted for 5.74%(n=21). The 60-day mortality of ST81-CDI was significantly higher than non-ST81 infected group, while ST81 also accounted for most of the recurrent CDI cases. Conclusion: This study revealed the molecular epidemiology and risk factors for the dominant C. difficile ST81 genotype infection in eastern China. Continuous and stringent surveillance on the emerging ST81 genotype needs to be initiated.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Hospitais de Ensino , Epidemiologia Molecular , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Toxinas Bacterianas/genética , China/epidemiologia , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/epidemiologia , Genótipo , Hospitais de Ensino/estatística & dados numéricos , Humanos , Masculino , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA