Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 178: 106186, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35306141

RESUMO

Doxorubicin (DOX) is a widely used and effective antineoplastic drug; however, its clinical application is limited by cardiotoxicity. A safe and effective strategy to prevent from doxorubicin-induced cardiotoxicity (DIC) is still beyond reach. Elabela (ELA), a new APJ ligand, has exerted cardioprotective effect against multiple cardiovascular diseases. Here, we asked whether ELA alleviates DIC. Mice were injected with DOX to established acute DIC. In vivo studies were assessed with echocardiography, serum cTnT and CK-MB, HW/BW ratio and WGA staining. Cell death and atrophy were measured by AM/PI staining and phalloidin staining respectively in vitro. Autophagic flux was monitored with Transmission electron microscopy in vivo, as well as LysoSensor and mRFP-GFP-LC3 puncta in vitro. Our results showed that ELA improved cardiac dysfunction in DIC mice. ELA administration also attenuated cell death and atrophy in DOX-challenged neonatal rat cardiomyocytes (NRCs). Additionally, we found that ELA restored DOX-induced autophagic flux blockage, which was evidenced by the reverse of p62 and LC3II, improvement of lysosome function and accelerated degradation of accumulated autolysosomes. Chloroquine, a classical autophagic flux inhibitor, blunted the improvement of ELA on cardiac dysfunction. At last, we revealed that ELA reversed DOX-induced downregulation of transcription factor EB (TFEB), and silencing TFEB by siRNA abrogated the effects of ELA on autophagic flux as well as cell death and atrophy in NRCs. In conclusion, this study indicated that ELA ameliorated DIC through enhancing autophagic flux via activating TFEB. ELA may become a potential target against DIC.


Assuntos
Cardiotoxicidade , Cardiopatias , Animais , Atrofia/metabolismo , Atrofia/patologia , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/farmacologia , Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/farmacologia , Cardiopatias/metabolismo , Camundongos , Miócitos Cardíacos , Ratos
2.
Front Pharmacol ; 9: 1032, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30298002

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease caused by increased pulmonary artery pressure and pulmonary vascular resistance, eventually leading to right heart failure until death. Soluble guanylate cyclase (sGC) has been regarded as an attractive drug target in treating PAH. In this study, we discovered that maprotiline, a tetracyclic antidepressant, bound to the full-length recombinant sGC with a high affinity (K D = 0.307 µM). Further study demonstrated that maprotiline concentration-dependently inhibited the proliferation of hypoxia-induced human pulmonary artery smooth muscle cells. Moreover, in a monocrotaline (MCT) rat model of PAH, maprotiline (ip, 10 mg/kg once daily) reduced pulmonary hypertension, inhibited the development of right ventricular hypertrophy and pathological changes of the pulmonary vascular remodeling. Taken together, our studies showed that maprotiline may contribute to attenuate disease progression of pulmonary hypertension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA