Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 719: 150048, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38763044

RESUMO

Double knockout of miR-183 and miR-96 results in retinal degeneration in mice; however, single knockout of miR-96 leads to developmental delay but not substantial retinal degeneration. To further explore the role of miR-96, we overexpressed this miRNA in mouse retinas. Interestingly, we found that overexpression of miR-96 at a safe dose results in retinal degeneration in the mouse retina. The retinal photoreceptors dramatically degenerated in the miR-96-overexpressing group, as shown by OCT, ERG and cryosectioning at one month after subretinal injection. Degenerative features such as TUNEL signals and reactive gliosis were observed in the miR-96-overexpressing retina. RNA-seq data revealed that immune responses and microglial activation occurred in the degenerating retina. Further qRT‒PCR and immunostaining experiments verified the microglial activation. Moreover, the number of microglia in the miR-96-overexpressing retinas was significantly increased. Our findings demonstrate that appropriate miR-96 expression is required for mouse retinal homeostasis.


Assuntos
Camundongos Endogâmicos C57BL , MicroRNAs , Microglia , Degeneração Retiniana , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Degeneração Retiniana/metabolismo , Camundongos , Microglia/metabolismo , Microglia/patologia , Retina/metabolismo , Retina/patologia
2.
J Vis Exp ; (192)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36847399

RESUMO

Ocular diseases, such as age-related macular degeneration, glaucoma, retinitis pigmentosa, and uveitis, are always accompanied by retinal structural changes. These diseases affecting the fundus always exhibit typical abnormalities in certain cell types in the retina, including photoreceptor cells, retinal ganglion cells, cells in the retinal blood vessels, and cells in the choroidal vascular cells. Noninvasive, highly efficient, and adaptable imaging techniques are required for both clinical practice and basic research. Image-guided optical coherence tomography (OCT) satisfies these requirements because it combines fundus photography and high-resolution OCT, providing an accurate diagnosis of tiny lesions as well as important changes in the retinal architecture. This study details the procedures of data collection and data analysis for image-guided OCT and demonstrates its application in rodent models of choroidal neovascularization (CNV), optic nerve crush (ONC), light-induced retinal degeneration, and experimental autoimmune uveitis (EAU). This technique helps researchers in the eye field to identify rodent retinal structural changes conveniently, reliably, and tractably.


Assuntos
Glaucoma , Degeneração Macular , Animais , Tomografia de Coerência Óptica/métodos , Roedores , Retina/diagnóstico por imagem , Retina/patologia , Degeneração Macular/patologia , Glaucoma/patologia
3.
Gene Ther ; 30(1-2): 160-166, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35794468

RESUMO

X-linked retinitis pigmentosa (XLRP) is the most severe form of Retinitis Pigmentosa (RP) and one of the leading causes of blindness in the world. Currently, there is no effective treatment for RP. In the present study, we recruited a XLRP family and identified a 4 bp deletion mutation (c. 2234_2237del) in RPGR ORF15 with Sanger sequencing, which was located in the exact same region as the missing XES (X chromosome exome sequencing) coverage. Then, we generated cell lines harboring the identified mutation and corrected it via enhanced prime editing system (ePE). Collectively, Sanger sequencing identified a pathogenic mutation in RPGR ORF15 for XLRP which was corrected with ePE. This study provides a valuable insight for genetic counseling of the afflicted family members and prenatal diagnosis, also paves a way for applying prime editing based gene therapy in those patients.


Assuntos
Proteínas do Olho , Doenças Genéticas Ligadas ao Cromossomo X , Retinose Pigmentar , Humanos , População do Leste Asiático , Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Mutação , Linhagem , Retinose Pigmentar/genética , Retinose Pigmentar/terapia
4.
Mol Ther ; 30(9): 2933-2941, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35821638

RESUMO

Adenine base editors (ABEs) are novel genome-editing tools, and their activity has been greatly enhanced by eight additional mutations, thus named ABE8e. However, elevated catalytic activity was concomitant with frequent generation of bystander mutations. This bystander effect precludes its safe applications required in human gene therapy. To develop next-generation ABEs that are both catalytically efficient and positionally precise, we performed combinatorial engineering of NG-ABE8e. We identify a novel variant (NG-ABE9e), which harbors nine mutations. NG-ABE9e exhibits robust and precise base-editing activity in human cells, with more than 7-fold bystander editing reduction at some sites, compared with NG-ABE8e. To demonstrate its practical utility, we used NG-ABE9e to correct the frequent T17M mutation in Rhodopsin for autosomal dominant retinitis pigmentosa. It reduces bystander editing by ∼4-fold while maintaining comparable efficiency. NG-ABE9e possesses substantially higher activity than NG-ABEmax and significantly lower bystander editing than NG-ABE8e in rice. Therefore, this study provides a versatile and improved adenine base editor for genome editing.


Assuntos
Adenina , Edição de Genes , Sistemas CRISPR-Cas , Humanos , Mutação
5.
J Zhejiang Univ Sci B ; 23(5): 382-391, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35557039

RESUMO

The application of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) can be limited due to a lack of compatible protospacer adjacent motif (PAM) sequences in the DNA regions of interest. Recently, SpRY, a variant of Streptococcus pyogenes Cas9 (SpCas9), was reported, which nearly completely fulfils the PAM requirement. Meanwhile, PAMs for SpRY have not been well addressed. In our previous study, we developed the PAM Definition by Observable Sequence Excision (PAM-DOSE) and green fluorescent protein (GFP)|-reporter systems to study PAMs in human cells. Herein, we endeavored to identify the PAMs of SpRY with these two methods. The results indicated that 5'-NRN-3', 5'-NTA-3', and 5'-NCK-3' could be considered as canonical PAMs. 5'-NCA-3' and 5'-NTK-3' may serve as non-priority PAMs. At the same time, PAM of 5'-NYC-3' is not recommended for human cells. These findings provide further insights into the application of SpRY for human genome editing.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Proteína 9 Associada à CRISPR/metabolismo , DNA , Edição de Genes/métodos , Humanos , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo
6.
Invest Ophthalmol Vis Sci ; 63(4): 24, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35481839

RESUMO

Purpose: Abundant retinal microRNA-183 cluster (miR-183C) has been reported to be a key player in photoreceptor development and functionality in mice. However, whether there is a protagonist in this cluster remains unclear. Here, we used a mutant mouse model to study the role of miR-96, a member of miR-183C, in photoreceptor development and functionality. Methods: The mature miR-96 sequence was removed using the CRISPR/Cas9 genome-editing system. Electroretinogram (ERG) and optical coherence tomography (OCT) investigated the changes in structure and function in mouse retinas. Immunostaining determined the localization and morphology of the retinal cells. RNA sequencing was conducted to observe retinal transcription alterations. Results: The miR-96 mutant mice exhibited cone developmental delay, as occurs in miR-183/96 double knockout mice. Immunostaining of cone-specific marker genes revealed cone nucleus mislocalization and exiguous Opn1mw/Opn1sw in the mutant (MT) mouse outer segments at postnatal day 10. Interestingly, this phenomenon could be relieved in the adult stages. Transcriptome analysis revealed activation of microtubule-, actin filament-, and cilia-related pathways, further supporting the findings. Based on ERG and OCT results at different ages, the MT mice displayed developmental delay not only in cones but also in rods. In addition, a group of miR-96 potential direct and indirect target genes was summarized for interpretation and further studies of miR-96-related retinal developmental defects. Conclusions: Depletion of miR-96 delayed but did not arrest photoreceptor development in mice. This miRNA is indispensable for mouse photoreceptor maturation, especially for cones.


Assuntos
MicroRNAs , Células Fotorreceptoras Retinianas Cones , Animais , Eletrorretinografia , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo
7.
Gene Ther ; 29(7-8): 458-463, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35095097

RESUMO

CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated endonuclease Cas9) nucleases have been widely applied for genome engineering. Staphylococcus aureus Cas9 (SaCas9) is compact, which can be packaged in AAV (adeno-associated virus) vector for in vivo gene editing. While, wild-type SaCas9 can induce unwanted off-target mutations and substantially limits the applications. So far, there are two reported SaCas9 variants with high-fidelity, including efSaCas9 from our previous study and SaCas9-HF. However, it remains unknown which one possessing the better fidelity and higher activity. Here, we performed a parallel comparison of efSaCas9 and SaCas9-HF in human cells through fluorescent reporter system and target deep sequencing, respectively. The results demonstrated that efSaCas9 possesses higher cleavage activity and fidelity than SaCas9-HF at the most endogenous sites in human cells. Collectively, our study provides insights for the rational selection of suitable SaCas9 for human genome editing.


Assuntos
Edição de Genes , Staphylococcus aureus , Sistemas CRISPR-Cas , Endonucleases/genética , Edição de Genes/métodos , Terapia Genética , Genoma Humano , Humanos , Staphylococcus aureus/genética
8.
Nat Commun ; 12(1): 5897, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625552

RESUMO

Adenine base editors (ABE) are genome-editing tools that have been harnessed to introduce precise A•T to G•C conversion. However, the low activity of ABE at certain sites remains a major bottleneck that precludes efficacious applications. Here, to address it, we develop a directional screening system in human cells to evolve the deaminase component of the ABE, and identify three high-activity NG-ABEmax variants: NG-ABEmax-SGK (R101S/D139G/E140K), NG-ABEmax-R (Q154R) and NG-ABEmax-K (N127K). With further engineering, we create a consolidated variant [NG-ABEmax-KR (N127K/Q154R)] which exhibit superior editing activity both in human cells and in mouse disease models, compared to the original NG-ABEmax. We also find that NG-ABEmax-KR efficiently introduce natural mutations in gamma globin gene promoters with more than four-fold increase in editing activity. This work provides a broadly applicable, rapidly deployable platform to directionally screen and evolve user-specified traits in base editors that extend beyond augmented editing activity.


Assuntos
Adenina , Edição de Genes , Animais , Modelos Animais de Doenças , Feminino , Terapia Genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , gama-Globinas/genética
9.
J Biol Chem ; 296: 100394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33567342

RESUMO

Clustered regularly interspaced short palindromic repeat-Cas12a has been harnessed to manipulate the human genome; however, low cleavage efficiency and stringent protospacer adjacent motif hinder the use of Cas12a-based therapy and applications. Here, we have described a directional evolving and screening system in human cells to identify novel FnCas12a variants with high activity. By using this system, we identified IV-79 (enhanced activity FnCas12a, eaFnCas12a), which possessed higher DNA cleavage activity than WT FnCas12a. Furthermore, to widen the target selection spectrum, eaFnCas12a was engineered through site-directed mutagenesis. eaFnCas12a and one engineered variant (eaFnCas12a-RR), used for correcting human RS1 mutation responsible for X-linked retinoschisis, had a 3.28- to 4.04-fold improved activity compared with WT. Collectively, eaFnCas12a and its engineered variants can be used for genome-editing applications that requires high activity.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Endodesoxirribonucleases/metabolismo , Proteínas do Olho/genética , Francisella/enzimologia , Mutação , Retinosquise/genética , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Células Cultivadas , Endodesoxirribonucleases/genética , Evolução Molecular , Francisella/genética , Francisella/isolamento & purificação , Edição de Genes/métodos , Humanos , Engenharia de Proteínas/métodos , Retinosquise/metabolismo , Retinosquise/patologia , Seleção Genética , Relação Estrutura-Atividade
10.
Mol Ther Methods Clin Dev ; 18: 869-879, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32953936

RESUMO

A major challenge to the development of therapies for human retinal degenerative diseases is the lack of an ideal preclinical model because of the physiological differences between humans and most model animals. Despite the successful generation of a primate model through germline knockout of a disease-causing gene, the major issues restricting modeling in nonhuman primates (NHPs) are their relatively long lifespan, lengthy gestation, and dominant pattern of singleton births. Herein, we generated three cynomolgus macaques with macular in situ knockout by subretinal delivery of an adeno-associated virus (AAV)-mediated CRISPR-Cas9 system targeting CNGB3, the gene responsible for achromatopsia. The in vivo targeting efficiency of CRISPR-Cas9 was 12%-14%, as shown by both immunohistochemistry and single-cell transcriptomic analysis. Through clinical ophthalmic examinations, we observed a reduced response of electroretinogram in the central retina, which corresponds to a somatic disruption of CNGB3. In addition, we did not detect CRISPR-Cas9 residue in the heart, liver, spleen, kidney, brain, testis, or blood a year after administration. In conclusion, we successfully generated a NHP model of cone photoreceptor dysfunction in the central retina using an in situ CNGB3-knockout strategy.

11.
Research (Wash D C) ; 2020: 1658678, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32259106

RESUMO

Human visual acuity is anatomically determined by the retinal fovea. The ontogenetic development of the fovea can be seriously hindered by oculocutaneous albinism (OCA), which is characterized by a disorder of melanin synthesis. Although people of all ethnic backgrounds can be affected, no efficient treatments for OCA have been developed thus far, due partly to the lack of effective animal models. Rhesus macaques are genetically homologous to humans and, most importantly, exhibit structures of the macula and fovea that are similar to those of humans; thus, rhesus macaques present special advantages in the modeling and study of human macular and foveal diseases. In this study, we identified rhesus macaque models with clinical characteristics consistent with those of OCA patients according to observations of ocular behavior, fundus examination, and optical coherence tomography. Genomic sequencing revealed a biallelic p.L312I mutation in TYR and a homozygous p.S788L mutation in OCA2, both of which were further confirmed to affect melanin biosynthesis via in vitro assays. These rhesus macaque models of OCA will be useful animal resources for studying foveal development and for preclinical trials of new therapies for OCA.

12.
Clin Genet ; 96(1): 61-71, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30945270

RESUMO

Adenosine diphosphate (ADP)-ribosylation factor-like 2 (ARL2) protein participates in a broad range of cellular processes and acts as a mediator for mutant ARL2BP in cilium-associated retinitis pigmentosa and for mutant HRG4 in mitochondria-related photoreceptor degeneration. However, mutant ARL2 has not been linked to any human disease so far. Here, we identified a de novo variant in ARL2 (c.44G > T, p.R15L) in a Chinese pedigree with MRCS (microcornea, rod-cone dystrophy, cataract, and posterior staphyloma) syndrome through whole-exome sequencing and co-segregation analysis. Co-immunoprecipitation assay and immunoblotting confirmed that the mutant ARL2 protein showed a 62% lower binding affinity for HRG4 while a merely 18% lower binding affinity for ARL2BP. Immunofluorescence images of ARL2 and HRG4 co-localizing with cytochrome c in HeLa cells described their relationship with mitochondria. Further analyses of the mitochondrial respiratory chain and adenosine triphosphate production showed significant abnormalities under an ARL2-mutant condition. Finally, we generated transgenic mice to test the pathogenicity of this variant and observed retinal degeneration complicated with microcornea and cataract that were similar to those in our patients. In conclusion, we uncover ARL2 as a novel candidate gene for MRCS syndrome and suggest a mitochondria-related mechanism of the first ARL2 variant through site-directed mutagenesis studies.


Assuntos
Doenças da Coroide/diagnóstico , Doenças da Coroide/genética , Sequenciamento do Exoma , Oftalmopatias Hereditárias/diagnóstico , Oftalmopatias Hereditárias/genética , Proteínas de Ligação ao GTP/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fenótipo , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Animais , Proteínas de Transporte , Criança , Consanguinidade , Modelos Animais de Doenças , Feminino , Proteínas de Ligação ao GTP/química , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Mutação , Linhagem , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
14.
Stem Cell Reports ; 10(4): 1267-1281, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29526738

RESUMO

Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence.


Assuntos
Ciliopatias/terapia , Terapia Genética , Células-Tronco Pluripotentes Induzidas/patologia , Organoides/patologia , Células Fotorreceptoras/patologia , Retina/patologia , Retinose Pigmentar/patologia , Retinose Pigmentar/terapia , Diferenciação Celular , Ciliopatias/patologia , Ciliopatias/fisiopatologia , Proteínas do Olho/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Células Fotorreceptoras/metabolismo , Canais de Potássio/metabolismo , Retinose Pigmentar/fisiopatologia
15.
Proc Natl Acad Sci U S A ; 114(24): 6376-6381, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28559309

RESUMO

MicroRNAs (miRNAs) are known to be essential for retinal maturation and functionality; however, the role of the most abundant miRNAs, the miR-183/96/182 cluster (miR-183 cluster), in photoreceptor cells remains unclear. Here we demonstrate that ablation of two components of the miR-183 cluster, miR-183 and miR-96, significantly affects photoreceptor maturation and maintenance in mice. Morphologically, early-onset dislocated cone nuclei, shortened outer segments and thinned outer nuclear layers are observed in the miR-183/96 double-knockout (DKO) mice. Abnormal photoreceptor responses, including abolished photopic electroretinography (ERG) responses and compromised scotopic ERG responses, reflect the functional changes in the degenerated retina. We further identify Slc6a6 as the cotarget of miR-183 and miR-96. The expression level of Slc6a6 is significantly higher in the DKO mice than in the wild-type mice. In contrast, Slc6a6 is down-regulated by adeno-associated virus-mediated overexpression of either miR-183 or miR-96 in wild-type mice. Remarkably, both silencing and overexpression of Slc6a6 in the retina are detrimental to the electrophysiological activity of the photoreceptors in response to dim light stimuli. We demonstrate that miR-183/96-mediated fine-tuning of Slc6a6 expression is indispensable for photoreceptor maturation and maintenance, thereby providing insight into the epigenetic regulation of photoreceptors in mice.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Animais , Visão de Cores/fisiologia , Eletrorretinografia , Epigênese Genética , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Visão Noturna/fisiologia , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia
16.
Sci Rep ; 7: 43062, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28216641

RESUMO

Precursor messenger RNA (Pre-mRNA) splicing is an essential biological process in eukaryotic cells. Genetic mutations in many spliceosome genes confer human eye diseases. Mutations in the pre-mRNA splicing factor, RP9 (also known as PAP1), predispose autosomal dominant retinitis pigmentosa (adRP) with an early onset and severe vision loss. However, underlying molecular mechanisms of the RP9 mutation causing photoreceptor degeneration remains fully unknown. Here, we utilize the CRISPR/Cas9 system to generate both the Rp9 gene knockout (KO) and point mutation knock in (KI) (Rp9, c.A386T, P.H129L) which is analogous to the reported one in the retinitis pigmentosa patients (RP9, c.A410T, P.H137L) in 661 W retinal photoreceptor cells in vitro. We found that proliferation and migration were significantly decreased in the mutated cells. Gene expression profiling by RNA-Seq demonstrated that RP associated genes, Fscn2 and Bbs2, were down-regulated in the mutated cells. Furthermore, pre-mRNA splicing of the Fscn2 gene was markedly affected. Our findings reveal a functional relationship between the ubiquitously expressing RP9 and the disease-specific gene, thereafter provide a new insight of disease mechanism in RP9-related retinitis pigmentosa.


Assuntos
Proliferação de Células , Perfilação da Expressão Gênica , Mutação Puntual , Fatores de Processamento de RNA/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Retinose Pigmentar/metabolismo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Movimento Celular , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas , Fatores de Processamento de RNA/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/fisiopatologia , Análise de Sequência de RNA
17.
Genet Med ; 17(4): 307-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25569437

RESUMO

PURPOSE: Retinitis pigmentosa (RP) is a major cause of heritable human blindness with extreme genetic heterogeneity. A large number of causative genes have been defined by next-generation sequencing (NGS). However, due to technical limitations, determining the existence of uncovered or low-depth regions is a fundamental challenge in analyzing NGS data. Therefore, undetected mutations may exist in genomic regions less effectively covered by NGS. METHODS: To address this problem, we tested a complementary approach for identifying previously undetected mutations in NGS data sets. The strategy consisted of coverage-based analysis and additional target screening of low-depth regions. Fifty RP patients were analyzed, and none of the mutations found had previously been identified by NGS. RESULTS: Coverage-based analysis indicated that, because of a highly repetitive sequence, the RPGR open reading frame (ORF)15 was located in an uncovered or low-depth region. Through additional screening of ORF15, we identified pathogenic mutations in 14% (7/50) of patients, including four novel mutations first described herein. CONCLUSION: In brief, we support the need for a complementary approach to identify mutations undetected by NGS, underscoring the power and significance of combining coverage-based analysis with additional target screening of low-depth regions in improving diagnosis of genetic diseases. In addition to its usefulness in RP, this approach is likely applicable to other Mendelian diseases.


Assuntos
Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Sequenciamento de Nucleotídeos em Larga Escala , Retinose Pigmentar/genética , Doenças Genéticas Ligadas ao Cromossomo X/etiologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Mutação/genética , Linhagem , Retinose Pigmentar/etiologia , Retinose Pigmentar/patologia
18.
Nat Commun ; 5: 3517, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24670872

RESUMO

Retinitis pigmentosa (RP) is characterized by degeneration of the retinal photoreceptors and is the leading cause of inherited blindness worldwide. Although few genes are known to cause autosomal recessive RP (arRP), a large proportion of disease-causing genes remain to be revealed. Here we report the identification of SLC7A14, a potential cationic transporter, as a novel gene linked to arRP. Using exome sequencing and direct screening of 248 unrelated patients with arRP, we find that mutations in the SLC7A14 gene account for 2% of cases of arRP. We further demonstrate that SLC7A14 is specifically expressed in the photoreceptor layer of the mammalian retina and its expression increases during postnatal retinal development. In zebrafish, downregulation of slc7a14 expression leads to an abnormal eye phenotype and defective light-induced locomotor response. Furthermore, targeted knockout of Slc7a14 in mice results in retinal degeneration with abnormal ERG response. This suggests that SLC7A14 has an important role in retinal development and visual function.


Assuntos
Sistema y+ de Transporte de Aminoácidos/genética , Genes Recessivos/genética , Predisposição Genética para Doença/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Retinose Pigmentar/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Análise Mutacional de DNA , Exoma/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Larva/genética , Larva/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Linhagem , Retina/embriologia , Retina/metabolismo , Retinose Pigmentar/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Sci Rep ; 4: 4121, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24535056

RESUMO

Hereditary cataracts are clinically and genetically heterogeneous lens diseases that cause a significant proportion of visual impairment and blindness in children. Human cataracts have been linked with mutations in two genes, GJA3 and GJA8, respectively. To identify the causative mutation in a family with hereditary cataracts, family members were screened for mutations by PCR for both genes. Sequencing the coding regions of GJA8, coding for connexin 50, revealed a C > A transversion at nucleotide 264, which caused p.P88T mutation. To dissect the molecular consequences of this mutation, plasmids carrying wild-type and mutant mouse ORFs of Gja8 were generated and ectopically expressed in HEK293 cells and human lens epithelial cells, respectively. The recombinant proteins were assessed by confocal microscopy and Western blotting. The results demonstrate that the molecular consequences of the p.P88T mutation in GJA8 include changes in connexin 50 protein localization patterns, accumulation of mutant protein, and increased cell growth.


Assuntos
Catarata/genética , Conexinas/genética , Mutação Puntual/genética , Adolescente , Sequência de Aminoácidos , Animais , Linhagem Celular , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Linhagem
20.
Invest Ophthalmol Vis Sci ; 55(3): 1724-34, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24557352

RESUMO

PURPOSE: The retinal degeneration 11 (rd11) mouse is a newly discovered, naturally occurring animal model with early photoreceptor dysfunction and rapid rod photoreceptor degeneration followed by cone degeneration. The rd11 mice carry a spontaneous mutation in the lysophosphatidylcholine acyltransferase 1 (Lpcat1) gene. Here, we evaluate whether gene replacement therapy using the fast-acting tyrosine-capsid mutant AAV8 (Y733F) can arrest retinal degeneration and restore retinal function in this model. METHODS: The AAV8 (Y733F)-smCBA-Lpcat1 was delivered subretinally to postnatal day 14 (P14) rd11 mice in one eye only. At 10 weeks after injection, treated rd11 mice were examined by visually-guided behavior, electroretinography (ERG) and spectral domain optical coherence tomography (SD-OCT), and then killed for morphologic and biochemical examination. RESULTS: Substantial scotopic and photopic ERG signals were maintained in treated rd11 eyes, whereas untreated eyes in the same animals showed extinguished signals. The SD-OCT (in vivo) and light microscopy (in vitro) showed a substantial preservation of the outer nuclear layer in most parts of the treated retina only. Almost wild-type LPCAT1 expression in photoreceptors with strong rod rhodopsin and M/S cone opsin staining, and normal visually-guided water maze behavioral performances were observed in treated rd11 mice. CONCLUSIONS: The results demonstrate that the tyrosine-capsid mutant AAV8 (Y733F) vector is effective for treating rapidly degenerating models of retinal degeneration and, moreover, is more therapeutically effective than AAV2 (Y444, 500, 730F) vector with the same promoter-cDNA payload. To our knowledge, this is the first demonstration of phenotypic rescue by gene therapy in an animal model of retinal degeneration caused by Lpcat1 mutation.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/genética , DNA/genética , Terapia Genética/métodos , Mutação , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/terapia , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Animais , Western Blotting , Análise Mutacional de DNA , Modelos Animais de Doenças , Eletrorretinografia , Vetores Genéticos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Retiniana/genética , Degeneração Retiniana/fisiopatologia , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA