Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 1725-1739, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38689716

RESUMO

Recent advances in high-throughput proteomic profiling technologies have facilitated the precise quantification of numerous proteins across multiple specimens concurrently. Researchers have the opportunity to comprehensively analyze the molecular signatures in plentiful medical specimens or disease pattern cell lines. Along with advances in data analysis and integration, proteomics data could be efficiently consolidated and employed to recognize precise elementary molecular mechanisms and decode individual biomarkers, guiding the precision treatment of tumors. Herein, we review a broad array of proteomics technologies and the progress and methods for the integration of proteomics data and further discuss how to better merge proteomics in precision medicine and clinical settings.

3.
Cell Signal ; 109: 110774, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331416

RESUMO

The insidious clinical symptoms of pancreatic cancer (PACA), extensive tolerance to radiotherapy and chemotherapy, and insensitivity to immunotherapy result in an inferior prognosis. Redox dyshomeostasis could trigger programmed cell death and contribute to functional changes in immune cells, which is strongly associated with tumorigenesis and tumor development. Therefore, it is warranted to decipher the crosstalk between regulated cell death and immunity in the context of redox dyshomeostasis for PACA. Herein, four redox-related subtypes of PACA were identified: C1 and C2 displayed malignant phenotypes with dismal clinical outcomes, conspicuous enrichment in cell death pathways, high redox score, low immune activation, and "immune-desert" tumor immune microenvironment (TIME); C3, an immune-rejection/excluded subtype, with abundant immune cells, high co-stimulatory, co-inhibitory, and MHC molecules, and potential response to immunotherapy; C4, with the best prognosis, low redox pattern, high level of autophagy, low enrichment of most cell death-related pathways, and "immune-hot" TIME. Overall, this study found an attractive platform from the perspective of redox-related pathways, which would propose insights into the intricate and elaborate molecular mechanisms of PACA and offer more effective and tailored intervention protocols.


Assuntos
Neoplasias Pancreáticas , Morte Celular Regulada , Humanos , Oxirredução , Morte Celular , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Mol Cancer ; 21(1): 220, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517820

RESUMO

Cancer drug resistance represents the main obstacle in cancer treatment. Drug-resistant cancers exhibit complex molecular mechanisms to hit back therapy under pharmacological pressure. As a reversible epigenetic modification, N6-methyladenosine (m6A) RNA modification was regarded to be the most common epigenetic RNA modification. RNA methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers) are frequently disordered in several tumors, thus regulating the expression of oncoproteins, enhancing tumorigenesis, cancer proliferation, development, and metastasis. The review elucidated the underlying role of m6A in therapy resistance. Alteration of the m6A modification affected drug efficacy by restructuring multidrug efflux transporters, drug-metabolizing enzymes, and anticancer drug targets. Furthermore, the variation resulted in resistance by regulating DNA damage repair, downstream adaptive response (apoptosis, autophagy, and oncogenic bypass signaling), cell stemness, tumor immune microenvironment, and exosomal non-coding RNA. It is highlighted that several small molecules targeting m6A regulators have shown significant potential for overcoming drug resistance in different cancer categories. Further inhibitors and activators of RNA m6A-modified proteins are expected to provide novel anticancer drugs, delivering the therapeutic potential for addressing the challenge of resistance in clinical resistance.


Assuntos
Adenosina , Neoplasias , Humanos , Adenosina/metabolismo , Metiltransferases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , RNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Microambiente Tumoral
5.
Cell Mol Life Sci ; 79(11): 577, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316529

RESUMO

Recently, immunotherapy has gained increasing popularity in oncology. Several immunotherapies obtained remarkable clinical effects, but the efficacy varied, and only subsets of cancer patients benefited. Breaking the constraints and improving immunotherapy efficacy is extremely important in precision medicine. Whereas traditional sequencing approaches mask the characteristics of individual cells, single-cell sequencing provides multiple dimensions of cellular characterization at the single-cell level, including genomic, transcriptomic, epigenomic, proteomic, and multi-omics. Hence, the complexity of the tumor microenvironment, the universality of tumor heterogeneity, cell composition and cell-cell interactions, cell lineage tracking, and tumor drug resistance mechanisms are revealed in-depth. However, the clinical transformation of single-cell technology is not to the point of in-depth study, especially in the application of immunotherapy. The newly discovered vital cells and tremendous biomarkers facilitate the development of more efficient individualized therapeutic regimens to guide clinical treatment and predict prognosis. This review provided an overview of the progress in distinct single-cell sequencing methods and emerging strategies. For perspective, the expanding utility of combining single-cell sequencing and other technologies was discussed.


Assuntos
Neoplasias , Proteômica , Humanos , Imunoterapia/métodos , Microambiente Tumoral/genética , Medicina de Precisão/métodos , Neoplasias/genética , Neoplasias/terapia , Biomarcadores Tumorais , Análise de Célula Única
6.
Int J Biol Sci ; 18(15): 5607-5623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263174

RESUMO

Immunotherapy treatments harnessing the immune system herald a new era of personalized medicine, offering considerable benefits for cancer patients. Over the past years, tumor neoantigens emerged as a rising star in immunotherapy. Neoantigens are tumor-specific antigens arising from somatic mutations, which are proceeded and presented by the major histocompatibility complex on the cell surface. With the advancement of sequencing technology and bioinformatics engineering, the recognition of neoantigens has accelerated and is expected to be incorporated into the clinical routine. Currently, tumor vaccines against neoantigens mainly encompass peptides, DNA, RNA, and dendritic cells, which are extremely specific to individual patients. Due to the high immunogenicity of neoantigens, tumor vaccines could activate and expand antigen-specific CD4+ and CD8+ T cells to intensify anti-tumor immunity. Herein, we introduce the origin and prediction of neoantigens and compare the advantages and disadvantages of multiple types of neoantigen vaccines. Besides, we review the immunizations and the current clinical research status in neoantigen vaccines, and outline strategies for enhancing the efficacy of neoantigen vaccines. Finally, we present the challenges facing the application of neoantigens.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico , Imunoterapia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Peptídeos , RNA
7.
Theranostics ; 12(14): 6273-6290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168626

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy represents a landmark advance in personalized cancer treatment. CAR-T strategy generally engineers T cells from a specific patient with a new antigen-specificity, which has achieved considerable success in hematological malignancies, but scarce benefits in solid tumors. Recent studies have demonstrated that tumor immune microenvironment (TIME) cast a profound impact on the immunotherapeutic response. The immunosuppressive landscape of TIME is a critical obstacle to the effector activity of CAR-T cells. Nevertheless, every cloud has a silver lining. The immunosuppressive components also shed new inspiration on reshaping a friendly TIME by targeting them with engineered CARs. Herein, we summarize recent advances in disincentives of TIME and discuss approaches and technologies to enhance CAR-T cell efficacy via addressing current hindrances. Simultaneously, we firmly believe that by parsing the immunosuppressive components of TIME, rationally manipulating the complex interactions of immunosuppressive components, and optimizing CAR-T cell therapy for each patient, the CAR-T cell immunotherapy responsiveness for solid malignancies will be substantially enhanced, and novel therapeutic targets will be revealed.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Terapia de Imunossupressão , Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T , Microambiente Tumoral
8.
Front Immunol ; 13: 958360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911705

RESUMO

Metastatic dissemination represents a hallmark of cancer that is responsible for the high mortality rate. Recently, emerging evidence demonstrates a time-series event-pre-metastatic niche (PMN) has a profound impact on cancer metastasis. Exosomes, cell-free DNA (cfDNA), circulating tumor cells (CTC), and tumor microenvironment components, as critical components in PMN establishment, could be monitored by liquid biopsy. Intensive studies based on the molecular profile of liquid biopsy have made it a viable alternative to tissue biopsy. Meanwhile, the complex molecular mechanism and intercellular interaction are great challenges for applying liquid biopsy in clinical practice. This article reviews the cellular and molecular components involved in the establishment of the PMN and the promotion of metastasis, as well as the mechanisms of their interactions. Better knowledge of the characteristics of the PMN may facilitate the application of liquid biopsy for clinical diagnosis, prognosis, and treatment.


Assuntos
Exossomos , Células Neoplásicas Circulantes , Exossomos/genética , Humanos , Biópsia Líquida , Células Neoplásicas Circulantes/patologia , Prognóstico , Microambiente Tumoral
9.
Int Immunopharmacol ; 111: 109173, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35998502

RESUMO

Circulating tumor DNA (ctDNA) sequencing holds considerable promise for early diagnosis and detection of surveillance and minimal residual disease. Blood ctDNA monitors specific cancers by detecting the alterations found in cancer cells, such as apoptosis and necrosis. Due to the short half-life, ctDNA reflects the actual burden of other treatments on tumors. In addition, ctDNA might be preferable to monitor tumor development and treatment compared with invasive tissue biopsy. ctDNA-based liquid biopsy brings remarkable strength to targeted therapy and precision medicine. Notably, multiple ctDNA analysis platforms have been broadly applied in clinical immunotherapy. Through targeted sequencing, early variations in ctDNA could predict response to immune checkpoint inhibitor (ICI). Several studies have demonstrated a correlation between ctDNA kinetics and anti-PD1 antibodies. The need for further research and development remains, although this biomarker holds significant prospects for early cancer detection. This review focuses on describing the basis of ctDNA and its current utilities in oncology and immunotherapy, either for clinical management or early detection, highlighting its advantages and inherent limitations.


Assuntos
DNA Tumoral Circulante , Neoplasias , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/análise , DNA Tumoral Circulante/genética , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1
10.
Int J Biol Macromol ; 215: 646-656, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35777508

RESUMO

Currently, it is still a huge challenge to prepare high performance eco-friendly poly(lactic acid) (PLA) with high thermal stability, good processability, excellent crystallization behavior, good transparency and highly-efficient fire safety. In this paper, a novel bio-based nucleation agent N-(furan-2-ylmethyl)-P,P-diphenylphosphinic amide (FPPA) was prepared and used for the fabrication of fire safety PLA/FPPA composites. The chemical structure of FPPA was measured by FTIR, NMR and MS. Further, the crystallization behavior, thermal stability, fire safety and mechanical properties of PLA/FPPA composites were performed by TGA, DSC, polarization microscope, LOI, UL94, cone calorimeter, DMA and, SEM, Raman, GC-MS, and TGA-FTIR. The results showed that the multifunctional FPPA not only had a high thermal stability and was a good nucleation agent for PLA. Moreover, only loading of 3 wt% FPPA increased the LOI of PLA from 19.0 to 33.8 % with UL-94 V-0 classification. Furthermore, the heat release rate and total heat release values of PLA/3%FPPA composite reduced by 6.3 % and 15.3 % in cone-calorimeter test. Such high fire safety was mainly attributed to specific fire safety radicals due to thermal degradation of FPPA to interrupt composites burning in gas phase. Besides, transparency and mechanical properties were almost not changed because of low loading of FPPA in PLA. This multifunctional bio-based fire-retardant for PLA with good comprehensive performance promises broad application in engineering electronics, automobiles, 3D printing and construction materials.


Assuntos
Retardadores de Chama , Cristalização , Poliésteres/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA