Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Insect Mol Biol ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613398

RESUMO

The silkworm (Bombyx mori) is an important model lepidopteran insect and can be used to identify pesticide resistance-related genes of great significance for biological control of pests. Uridine diphosphate glucosyltransferases (UGTs), found in all organisms, are the main secondary enzymes involved in the metabolism of heterologous substances. However, it remains uncertain if silkworm resistance to fenpropathrin involves UGT. This study observes significant variations in BmUGT expression among B. mori strains with variable fenpropathrin resistance post-feeding, indicating BmUGT's role in fenpropathrin detoxification. Knockdown of BmUGT with RNA interference and overexpression of BmUGT significantly decreased and increased BmN cell activity, respectively, indicating that BmUGT plays an important role in the resistance of silkworms to fenpropathrin. In addition, fenpropathrin residues were significantly reduced after incubation for 12 h with different concentrations of a recombinant BmUGT fusion protein. Finally, we verified the conservation of UGT to detoxify fenpropathrin in Spodoptera exigua: Its resistance to fenpropathrin decreased significantly after knocking down SeUGT. In a word, UGT plays an important role in silkworm resistance to fenpropathrin by directly degrading the compound, a function seen across other insects. The results of this study are of great significance for breeding silkworm varieties with high resistance and for biological control of pests.

2.
Pest Manag Sci ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488318

RESUMO

BACKGROUND: Voltage-dependent anion-selective channels (VDACs) serve as pore proteins within the mitochondrial membrane, aiding in the regulation of cell life and cell death. Although the occurrence of cell death is crucial for defense against virus infection, the function played by VDAC in Bombyx mori, in response to the influence of Bombyx mori nucleopolyhedrovirus (BmNPV), remains unclear. RESULTS: BmVDAC was found to be relatively highly expressed both during embryonic development, and in the Malpighian tubule and midgut. Additionally, the expression levels of BmVDAC were found to be different among silkworm strains with varying levels of resistance to BmNPV, strongly suggesting a connection between BmVDAC and virus infection. To gain further insight into the function of BmVDAC in BmNPV, we employed RNA interference (RNAi) to silence and overexpress it by pIZT/V5-His-mCherry. The results revealed that BmVDAC is instrumental in developing the resistance of host cells to BmNPV infection in BmN cell-line cells, which was further validated as likely to be associated with initiating programmed cell death (PCD). Furthermore, we evaluated the function of BmVDAC in another insect, Spodoptera exigua. Knockdown of the BmVDAC homolog in S. exigua, SeVDAC, made the larvae more sensitive to BmNPV. CONCLUSION: We have substantiated the pivotal role of BmVDAC in conferring resistance against BmNPV infection, primarily associated with the initiation of PCD. The findings of this study shine new light on the molecular mechanisms governing the silkworm's response to BmNPV infection, thereby supporting innovative approaches for pest biocontrol. © 2024 Society of Chemical Industry.

3.
J Hazard Mater ; 469: 133919, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38432093

RESUMO

Chlorinated polyfluorinated ether sulfonate (Cl-PFESA), a substitute for perfluorooctane sulfonate (PFOS), has been widely used in the Chinese electroplating industry under the trade name F-53B. The production and use of F-53B is keep increasing in recent years, consequently causing more emissions into the environment. Thus, there is a growing concern about the adverse effects of F-53B on human health. However, related research is very limited, particularly in terms of its toxicity to the vascular system. In this study, C57BL/6 J mice were exposed to 0.04, 0.2, and 1 mg/kg F-53B for 12 weeks to assess its impact on the vascular system. We found that F-53B exposure caused aortic wall thickening, collagen deposition, and reduced elasticity in mice. In addition, F-53B exposure led to a loss of vascular endothelial integrity and a vascular inflammatory response. Intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were found to be indispensable for this process. Furthermore, RNA sequencing analysis revealed that F-53B can decrease the repair capacity of endothelial cells by inhibiting their proliferation and migration. Collectively, our findings demonstrate that F-53B exposure induces vascular inflammation and loss of endothelial integrity as well as suppresses the repair capacity of endothelial cells, which ultimately results in vascular injury, highlighting the need for a more thorough risk assessment of F-53B to human health.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Animais , Camundongos , Éter/metabolismo , Células Endoteliais , Peixe-Zebra/metabolismo , Camundongos Endogâmicos C57BL , Poluentes Químicos da Água/análise , Alcanossulfonatos/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Ácidos Alcanossulfônicos/metabolismo , Fluorocarbonos/análise
4.
J Sci Food Agric ; 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38521988

RESUMO

BACKGROUND: The biological functions of ferulic acid (FA) have garnered significant interest but its limited solubility and stability have led to low bioavailability. Hydroxypropyl-ß-cyclodextrin (HP-ß-CD), with its distinctive hollow structure, offers the potential for encapsulating hydrophobic molecules. The formation of an inclusion complex between FA and HP-ß-CD may therefore be a viable approach to address the inherent limitations of FA. To investigate the underlying mechanism of the FA/HP-ß-CD inclusion complex formation, a combination of spectral analyses and computer simulation was employed. RESULTS: The disappearance of the characteristic peaks of FA in Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed the formation of an inclusion complex between FA and HP-ß-CD. Thermogravimetry-derivative thermogravimetry (TG-DTG) studies demonstrated that the thermal stability of FA was enhanced due to the encapsulation of FA within HP-ß-CD. Molecular dynamics simulation also provided evidence that FA successfully penetrated the HP-ß-CD cavity, primarily driven by van der Waals interactions. The formation of the complex resulted in more compact HP-ß-CD structures. The bioavailability of FA was also strengthened through the formation of inclusion complexes with HP-ß-CD. CONCLUSIONS: The findings of this study have contributed to a deeper understanding of the interactions between FA and HP-ß-CD, potentially advancing a delivery system for FA and enhancing the bioavailability of insoluble active components. © 2024 Society of Chemical Industry.

5.
Insect Mol Biol ; 33(3): 246-258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38323672

RESUMO

Molybdenum cofactor sulfurase (MoCoS) is a key gene involved in the uric acid metabolic pathway that activates xanthine dehydrogenase to synthesise uric acid. Uric acid is harmful to mammals but plays crucial roles in insects, one of which is the immune responses. However, the function of Bombyx mori MoCoS in response to BmNPV remains unclear. In this study, BmMoCoS was found to be relatively highly expressed in embryonic development, gonads and the Malpighian tubules. In addition, the expression levels of BmMoCoS were significantly upregulated in three silkworm strains with different levels of resistance after virus infection, suggesting a close link between them. Furthermore, RNAi and overexpression studies showed that BmMoCoS was involved in resistance to BmNPV infection, and its antivirus effects were found to be related to the regulation of uric acid metabolism, which was uncovered by inosine- and febuxostat-coupled RNAi and overexpression. Finally, the BmMoCoS-mediated uric acid pathway was preliminarily confirmed to be a potential target to protect silkworms from BmNPV infection. Overall, this study provides new evidence for elucidating the molecular mechanism of silkworms in response to BmNPV infection and new strategies for the prevention of viral infections in sericulture.


Assuntos
Bombyx , Proteínas de Insetos , Nucleopoliedrovírus , Animais , Bombyx/enzimologia , Bombyx/genética , Bombyx/virologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Larva/metabolismo , Larva/crescimento & desenvolvimento , Larva/virologia , Metaloproteínas/metabolismo , Metaloproteínas/genética , Cofatores de Molibdênio , Nucleopoliedrovírus/fisiologia , Interferência de RNA , Ácido Úrico/metabolismo
6.
Front Public Health ; 11: 1173101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655293

RESUMO

Background: Existing evidence indicates that exposure to per- and polyfluoroalkyl substances (PFASs) may increase the risk of hypertension, but the findings are inconsistent. Therefore, we aimed to explore the relationship between PFASs and hypertension through this systematic review and meta-analysis. Methods: We searched PubMed, Embase, and the Web of Science databases for articles published in English that examined the relationship between PFASs and hypertension before 13 August 2022. The random effects model was used to aggregate the evaluation using Stata 15.0 for Windows. We also conducted subgroup analyses by region and hypertension definition. In addition, a sensitivity analysis was carried out to determine the robustness of the findings. Results: The meta-analysis comprised 15 studies in total with 69,949 individuals. The risk of hypertension was substantially and positively correlated with exposure to perfluorooctane sulfonate (PFOS) (OR = 1.31, 95% CI: 1.14, 1.51), perfluorooctanoic acid (PFOA) (OR = 1.16, 95% CI: 1.07, 1.26), and perfluorohexane sulfonate (PFHxS) (OR = 1.04, 95% CI: 1.00, 1.09). However, perfluorononanoic acid (PFNA) exposure and hypertension were not significantly associated (OR = 1.08, 95% CI: 0.99, 1.17). Conclusion: We evaluated the link between PFASs exposure and hypertension and discovered that higher levels of PFOS, PFOA, and PFHxS were correlated with an increased risk of hypertension. However, further high-quality population-based and pathophysiological investigations are required to shed light on the possible mechanism and demonstrate causation because of the considerable variability. Systematic review registration: https://www.crd.york.ac.uk/prospero/ PROSPERO, registration number: CRD 42022358142.


Assuntos
Fluorocarbonos , Hipertensão , Humanos , Alcanossulfonatos , Fluorocarbonos/efeitos adversos , Hipertensão/epidemiologia
7.
Arch Insect Biochem Physiol ; 114(4): e22054, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37700521

RESUMO

Signaling pathways regulate the transmission of signals during organism growth and development, promoting the smooth and accurate completion of numerous physiological and biochemical reactions. The extracellular signal-regulated kinase (ERK) signaling pathway is an essential pathway involved in regulating various physiological processes, such as cell proliferation, differentiation, adhesion, migration, and more. This pathway also contributes to several important physiological processes in silkworms, including protein synthesis, reproduction, and immune defense against pathogens. Organizing related studies on the ERK signaling pathway in silkworms can provide a better understanding of its mechanism in Lepidopterans and develop a theoretical foundation for improving cocoon production and new strategies for pest biological control.


Assuntos
Bombyx , MAP Quinases Reguladas por Sinal Extracelular , Lepidópteros , Animais , Bombyx/genética , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Transdução de Sinais
8.
Pestic Biochem Physiol ; 194: 105485, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532315

RESUMO

The widespread use of pyrethroid pesticides has brought serious economic losses in sericulture, but there is still no viable solution. The key to solving the problem is to improve silkworm resistance to pesticides, which depends on understanding the resistance mechanism of silkworms to pesticides. This study aimed to use transcriptomes to understand the underlying mechanism of silkworm resistance to fenpropathrin, which will provide a theoretical molecular reference for breeding pesticide-resistant silkworm varieties. In this study, the fat bodies of two strains with differential resistance after 12 h of fenpropathrin feeding were analyzed using RNA-Seq. After feeding fenpropathrin, 760 differentially expressed genes (DEGs) were obtained in the p50(r) strain and 671 DEGs in the 8y strain. The DEGs involved in resistance to fenpropathrin were further identified by comparing the two strains, including 207 upregulated DEGs in p50(r) and 175 downregulated DEGs in 8y. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these fenpropathrin-related DEGs are mainly enriched in the metabolism and transporter pathways. Moreover, 28 DEGs involved in the metabolic pathway and 18 in the transporter pathway were identified. Furthermore, organic cation transporter protein 6 (BmOCT6), a transporter pathway member, was crucial in enhancing the tolerance of BmN cells to fenpropathrin. Finally, the knockdown of the expression of the homologs of BmOCT6 in Glyphodes pyloalis (G. pyloalis) significantly decreased the resistant level of larvae to fenpropathrin. The findings showed that the metabolism and transporter pathways are associated with resistance to fenpropathrin in silkworm, and OCT6 is an effective and potential target not only for silkworm breeding but also for pest biocontrol.


Assuntos
Bombyx , Lepidópteros , Praguicidas , Piretrinas , Animais , Bombyx/genética , Bombyx/metabolismo , Transcriptoma , Lepidópteros/genética , Corpo Adiposo , Perfilação da Expressão Gênica , Piretrinas/toxicidade , Piretrinas/metabolismo , Praguicidas/metabolismo
9.
Insects ; 14(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37367321

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is a serious threat to sericulture. Nevertheless, no effective control strategy is currently available. The innate immunity of silkworm is critical in the antiviral process. Exploring its molecular mechanism provides theoretical support for the prevention and treatment of BmNPV. Insect hormone receptors play an essential role in regulating host immunity. We found a correlation between Bombyx mori ecdysone receptor B1 (BmEcR-B1) and BmNPV infection, whereas the underlying mechanism remains unclear. In this study, the expression patterns and sequence characteristics of BmEcR-B1 and its isoform, BmEcR-A, were initially analyzed. BmEcR-B1 was found to be more critical than BmEcR-A in silkworm development and responses to BmNPV. Moreover, RNAi and an overexpression in BmN cells showed BmEcR-B1 had antiviral effects in the presence of 20-hydroxyecdysone (20E); Otherwise, it had no antiviral activity. Furthermore, BmEcR-B1 was required for 20E-induced apoptosis, which significantly suppressed virus infection. Finally, feeding 20E had no significant negative impacts on larval growth and the cocoon shell, suggesting the regulation of this pathway has practical value in controlling BmNPV in sericulture. The findings of this study provide important theoretical support for understanding the mechanism of the silkworm innate immune system in response to BmNPV infection.

10.
Insect Mol Biol ; 32(5): 558-574, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37209025

RESUMO

The white epidermis of silkworms is due to the accumulation of uric acid crystals. Abnormal silkworm uric acid metabolism decreases uric acid production, leading to a transparent or translucent phenotype. The oily silkworm op50 is a mutant strain with a highly transparent epidermis derived from the p50 strain. It shows more susceptibility to Bombyx mori nucleopolyhedrovirus (BmNPV) infection than the wild type; however, the underlying mechanism is unknown. This study analysed the changes in 34 metabolites in p50 and op50 at different times following BmNPV infection based on comparative metabolomics. The differential metabolites were mainly clustered in six metabolic pathways. Of these, the uric acid pathway was identified as critical for resistance in silkworms, as feeding with inosine significantly enhanced larval resistance compared to other metabolites and modulated other metabolic pathways. Additionally, the increased level of resistance to BmNPV in inosine-fed silkworms was associated with the regulation of apoptosis, which is mediated by the reactive oxygen species produced during uric acid synthesis. Furthermore, feeding the industrial strain Jingsong (JS) with inosine significantly increased the level of larval resistance to BmNPV, indicating its potential application in controlling the virus in sericulture. These results lay the foundation for clarifying the resistance mechanism of silkworms to BmNPV and provide new strategies and methods for the biological control of pests.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Bombyx/genética , Ácido Úrico/metabolismo , Nucleopoliedrovírus/fisiologia , Apoptose , Larva
11.
J Agric Food Chem ; 71(20): 7866-7877, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37191230

RESUMO

Perfluorooctane sulfonate (PFOS), a new type of persistent organic pollutant in the environment of water, has drawn significant attention in recent years due to its widespread prevalence and high toxicity. Neurotoxicity is regarded as one of the major toxic effects of PFOS, while research studies on PFOS-induced depression and the underlying mechanisms remain scarce. In this study, behavioral tests revealed the depressive-like behaviors in PFOS-exposed male mice. Neuron damages including pyknosis and staining deepening were identified through hematoxylin and eosin staining. Then, we noticed the elevation of glutamate and proline levels as well as the decline of glutamine and tryptophan levels. Proteomics analysis identified 105 differentially expressed proteins that change in a dose-dependent manner and revealed that PFOS exposure activated the glutamatergic synapse signaling pathway, which were further confirmed by Western blot, and the data were consistent with the findings of the proteomics analysis. Additionally, the downstream signaling cyclic AMP-responsive element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) and synaptic plasticity-related postsynaptic density protein 95, synaptophysin, were downregulated. Our results highlight that PFOS exposure may inhibit the synaptic plasticity of the hippocampus via glutamatergic synapse and the CREB/BDNF signaling pathway to cause depressive-like behaviors in male mice.


Assuntos
Ácidos Alcanossulfônicos , Fator Neurotrófico Derivado do Encéfalo , Masculino , Animais , Camundongos , Depressão , Ácidos Alcanossulfônicos/metabolismo , Sinapses/química , Sinapses/metabolismo , Hipocampo
12.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982179

RESUMO

Downy mildew caused by oomycete pathogen Plasmopara viticola is a devastating disease of grapevine. P. viticola secretes an array of RXLR effectors to enhance virulence. One of these effectors, PvRXLR131, has been reported to interact with grape (Vitis vinifera) BRI1 kinase inhibitor (VvBKI1). BKI1 is conserved in Nicotiana benthamiana and Arabidopsis thaliana. However, the role of VvBKI1 in plant immunity is unknown. Here, we found transient expression of VvBKI1 in grapevine and N. benthamiana increased its resistance to P. viticola and Phytophthora capsici, respectively. Furthermore, ectopic expression of VvBKI1 in Arabidopsis can increase its resistance to downy mildew caused by Hyaloperonospora arabidopsidis. Further experiments revealed that VvBKI1 interacts with a cytoplasmic ascorbate peroxidase, VvAPX1, an ROS-scavenging protein. Transient expression of VvAPX1 in grape and N. benthamiana promoted its resistance against P. viticola, and P. capsici. Moreover, VvAPX1 transgenic Arabidopsis is more resistant to H. arabidopsidis. Furthermore, both VvBKI1 and VvAPX1 transgenic Arabidopsis showed an elevated ascorbate peroxidase activity and enhanced disease resistance. In summary, our findings suggest a positive correlation between APX activity and resistance to oomycetes and that this regulatory network is conserved in V. vinifera, N. benthamiana, and A. thaliana.


Assuntos
Arabidopsis , Oomicetos , Phytophthora , Vitis , Ascorbato Peroxidases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Phytophthora/metabolismo , Proteínas/metabolismo , Resistência à Doença/genética , Vitis/genética , Vitis/metabolismo , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
13.
Pest Manag Sci ; 78(12): 5302-5312, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36054174

RESUMO

BACKGROUND: Nucleopolyhedrovirus (NPV), one of the baculoviruses, is a promising biopesticide for pest control. Lepidopteran account for 70% of pests, therefore investigation on highly conserved genes associated with viral infections in the lepidopteran model, the silkworm, will serve as a valuable reference for improving the effectiveness of pest management. BmE74A is a member of the erythroblast transformation-specific (ETS) family of transcription factors in Bombyx mori, which we previously found to be highly conserved and closely associated with BmNPV. This study aimed to elucidate the role of BmE74A in viral infection. RESULTS: A significantly high expression of BmE74A in eggs indicated its important role in embryonic development, as did relatively high expressions in the hemolymph and midgut. Significant differences in BmE74A expression in different resistant strains after BmNPV infection suggested its involvement as a response to viral infection. Moreover, RNA interference (RNAi) and overexpression experiments confirmed the important role of BmE74A in promoting viral infection. BmNPV infection was significantly suppressed and enhanced by BmE74A knockdown and overexpression, respectively. Besides, BmE74A was found to regulate the expression of BmMdm2 and Bmp53. Furthermore, the binding of ETS, the functional domain of BmE74A, to occlusion-derived virus proteins was confirmed by far-western blotting, and four viral proteins that may interact with ETS proteins were identified by mass spectrometry. Similarly, a homolog of BmE74A in Spodoptera litura was also found to be involved in larval susceptibility to BmNPV. CONCLUSION: BmE74A promotes BmNPV proliferation by directly interacting with the virus, which may be related to the suppression of the p53 pathway. © 2022 Society of Chemical Industry.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Bombyx/metabolismo , Fatores de Transcrição/genética , Nucleopoliedrovírus/fisiologia , Hemolinfa/metabolismo , Regulação da Expressão Gênica , Proteínas de Insetos/genética
14.
Oncotarget ; 8(44): 75834-75843, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100272

RESUMO

Increasing evidence has suggested that dysregulated lncRNA expression played important roles in the development and progression of human cancers. Although prognostic roles of lncRNAs have been recognized for colon cancer (CC) patients, the search for novel lncRNA biomarkers potentially involved in CC progression is an urgent and still largely unmet medical need. In this study, we evaluated the lncRNA expression changes during the progression of CC by analyzing two cohorts of previously published expression profiles of CC patients and identified hundreds of differentially expressed lncRNAs. Then we identified eight lncRNAs that closely associated with the progression of CC patients from a large number of significantly altered lncRNAs using random forest supervised classification algorithm. Finally, an SVM-based lncRNA risk classifier was developed to discriminate high-risk CC patients from persons with early-stage and validated in both the training dataset and testing dataset by survival analysis and five-fold cross-validation strategy. Our pathway enrichment analysis based on protein-coding genes that are co-expressed with lncRNAs, suggested that variation in expression of eight lncRNAs biomarkers might affect critical pathways involved in CC progression. With further validation, these eight lncRNAs might have significant implications for the clinical management of CC patients with early stage and improve our understanding of cancer progression.

15.
Environ Toxicol Pharmacol ; 37(2): 679-88, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24607683

RESUMO

This study investigated the effects of seahorse (Hippocampus spp.) extracts in a rat model of benign prostatic hyperplasia (BPH) and mouse model of oligospermatism. Compared to the sham operated group, castration and testosterone induced BPH, indicated by increased penile erection latency; decreased penis nitric oxide synthase (NOS) activity; reduced serum acid phosphatase (ACP) activity; increased prostate index; and epithelial thickening, increased glandular perimeter, increased proliferating cell nuclear antigen (PCNA) index and upregulation of basic fibroblast growth factor (bFGF) in the prostate. Seahorse extracts significantly ameliorated the histopathological changes associated with BPH, reduced the latency of penile erection and increased penile NOS activity. Administration of seahorse extracts also reversed epididymal sperm viability and motility in mice treated with cyclophosphamide (CP). Seahorse extracts have potential as a candidate marine drug for treating BPH without inducing the side effects of erectile dysfunction (ED) or oligospermatism associated with the BPH drug finasteride.


Assuntos
Produtos Biológicos/uso terapêutico , Oligospermia/tratamento farmacológico , Hiperplasia Prostática/tratamento farmacológico , Smegmamorpha , Fosfatase Ácida/sangue , Animais , Produtos Biológicos/farmacologia , Castração , Ciclofosfamida , Modelos Animais de Doenças , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Masculino , Camundongos , Óxido Nítrico Sintase/metabolismo , Oligospermia/sangue , Oligospermia/induzido quimicamente , Oligospermia/patologia , Pênis/efeitos dos fármacos , Pênis/metabolismo , Pênis/fisiologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Próstata/efeitos dos fármacos , Próstata/patologia , Hiperplasia Prostática/sangue , Hiperplasia Prostática/etiologia , Hiperplasia Prostática/patologia , Ratos Sprague-Dawley , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Testosterona
16.
J Agric Food Chem ; 61(20): 4882-9, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23627413

RESUMO

A novel heteropolysaccharide (GPP-TL) was isolated from tetraploid Gynostemma pentaphyllum (Makino) leaf by hot water extraction and anion-exchange and gel permeation chromatography approaches. GPP-TL had a molecular weight of 9.3 × 10(3) Da and was primarily composed of glucose, galactose, and arabinose, with a molar ratio of 43:5:1, respectively. The chemical structure of GPP-TL was characterized using chemical and instrumental analyses. The results indicated the presence of (1→4)-α-d-glucopyranosyl, (1→4)-ß-d-galactopyranosyl, (1→4,6)-linked-α-d-glucopyranosyl, and terminal 1→)-α-d-glucopyranosyl moieties in a molar ratio of 5.7:1:1.5:1, respectively. The results indicated that GPP-TL had glucose and galactose residues in the main chain with (1→6)-linked branches at glucose residues. In addition, GPP-TL exhibited scavenging capacities against hydroxyl, peroxyl, and DPPH radicals in vitro and had a stronger bile acid-binding ability than psyllium on a same-weight basis.


Assuntos
Gynostemma/química , Polissacarídeos/isolamento & purificação , Antioxidantes/farmacologia , Arabinose/análise , Ácidos e Sais Biliares/metabolismo , Configuração de Carboidratos , Sequestradores de Radicais Livres/farmacologia , Radicais Livres/química , Galactose/análise , Glucose/análise , Peso Molecular , Folhas de Planta/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Psyllium/metabolismo
17.
Carbohydr Polym ; 92(2): 1159-65, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23399141

RESUMO

Oat ß-glucan was purified from oat bran and its effects on running performance and related biochemical parameters were investigated. Four-week-old male Sparsgue-Dawley rats, fed with/without oat ß-glucan (312.5 mg kg(-1) d(-1)) for 7 weeks, were subjected to run on a treadmill system to make them exhausted. All rats were immediately sacrificed after prolonged exercise, and the major metabolic substrates were measured in serum and liver. The results showed feeding dietary oat ß-glucan to rats could significantly reduce the body weight and increase the maximum running time compared with normal control (P<0.05). Furthermore, dietary oat ß-glucan decreased the levels of blood urea nitrogen, lactate acid, and creatine kinase activity in serum, and increased the levels of non-esterified fatty acids, lactic dehydrogenase activity in serum, and the content of liver glycogen. Therefore, the present study demonstrated that dietary oat ß-glucan can enhance the endurance capacity of rats while facilitating their recovery from fatigue.


Assuntos
Avena/química , Fadiga/tratamento farmacológico , Condicionamento Físico Animal , Resistência Física/efeitos dos fármacos , beta-Glucanas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Peso Corporal/efeitos dos fármacos , Fenômenos Químicos , Creatina Quinase/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Teste de Esforço , Fadiga/sangue , Fadiga/metabolismo , Fadiga/fisiopatologia , Ácidos Graxos não Esterificados/sangue , Glicogênio/metabolismo , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ratos , Ratos Sprague-Dawley , Corrida/fisiologia , beta-Glucanas/uso terapêutico
18.
Carbohydr Polym ; 92(2): 2111-7, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23399265

RESUMO

A novel water-soluble polysaccharide (GPP), with a molecular mass of 7.1×10(3) Da, was isolated from the defatted whole-plant of diploid Gynostemma pentaphyllum Makino. Monosaccharide composition analysis indicated that GPP was a heteropolysaccharide mainly containing mannose, glucose, galactose and arabinose, at a molar ratio of 1.00:77.33:4.81:1.83. The detailed structure analysis revealed that GPP consisted of a (1→4)-α-D-glucoside backbone with a 1→)-α-D-glucopyranosyl branch at the C-6 position of (1→4,6)-linked-α-D-glucopyranosyl on every 5 monosaccharide residues, with a few mannose, galactose and arabinose terminal residues. GPP exhibited scavenging capacities against hydroxyl, peroxyl and DPPH radicals in vitro, and had a greater bile acid-binding ability than psyllium on a per weight basis. These results suggested a potential application of GPP in functional foods and dietary supplements.


Assuntos
Antioxidantes/química , Antioxidantes/isolamento & purificação , Diploide , Gynostemma/química , Gynostemma/genética , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Antioxidantes/metabolismo , Ácidos e Sais Biliares/metabolismo , Peso Molecular , Monossacarídeos/análise , Polissacarídeos/metabolismo
19.
Mol Med Rep ; 7(3): 1050-4, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23340803

RESUMO

Integrin-linked kinase (ILK) plays a role in the regulation of multiple cellular functions (e.g., promoting cell migration and proliferation, but inhibiting cell adhesion). This study investigated the inhibitory effects of ILK gene knockdown on the regulation of in vivo tumorigenesis of human ovarian carcinoma cells in nude mouse xenografts. HO-8910 cells were transfected with an ILK antisense oligonucleotide (ILK-ASO) to silence the ILK gene. Expression of ILK mRNA and protein was evaluated by RT-PCR and western blotting, respectively. The cell cycle was assessed by flow cytometric analysis. Cells with or without ILK-ASO transfection were subcutaneously injected into nude mice. The mouse body weight, tumor formation, tumor size and tumor weight were determined up to 30 days after inoculation. Tumor cells transfected with ILK-ASO had significantly decreased ILK mRNA and protein expression (P<0.01) when compared to the control cells. ILK gene silencing significantly increased the number of cells in the G0/G1 phase (67.61 vs. 43.29%, χ2=1197.15, P<0.01). After tumor cell inoculation, tumor cells transfected with ILK-ASO showed significantly delayed tumor formation when compared to control (9.10±0.74 vs. 5.30±0.67 days, respectively; P<0.01). In addition, tumor growth was suppressed in the 30 days following inoculation (P<0.01 compared with the controls). The average tumor weight in the ILK-ASO group was statistically lower than that of the control group (1.29±0.11 vs. 1.57±0.13 g, respectively; P<0.01). This study demonstrated that ILK-ASO transfection efficiently downregulated ILK expression in human ovarian carcinoma HO-8910 cells and that ILK gene silencing suppressed tumor growth in nude mice xenografts.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Animais , Carcinogênese , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico , Transplante Heterólogo
20.
Food Chem ; 138(1): 454-62, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23265511

RESUMO

The effect of genotype (G), growing environment (E), and their interaction (G×E) on the antioxidant properties and chemical compositions were investigated using the flour samples of 10 wheat varieties grown in four different locations in Maryland. Lutein content of wheat flour ranged from 0.10 to 0.69 µg/g, and α-tocopherol ranged from 0.12 to 0.83 µg/g. Total carotenoids were primarily affected by E (45.7%), while G×E interaction had a larger effect on the level of total tocopherols (71.6%). E had the largest effect on antioxidant activity against oxygen, hydroxyl, and ABTS(·+) radicals. G had the least influence on the measured phytochemicals and antioxidant activity assays. Total carotenoids had a significant correlation with average low air temperature (r=0.359, p<0.01) as well as precipitation level (r=0.214, p<0.01). ABTS(·+) radical scavenging capacity had a positive correlation with average air temperature (r=0.705, p<0.01), while hydroxyl radical scavenging capacity had a negative correlation with temperature (r=-0.269. p<0.01). These results show that environment, genotype, and their interaction could influence the levels of lipophilic antioxidants and antioxidant activities of wheat flour.


Assuntos
Antioxidantes/química , Farinha/análise , Triticum/genética , Antioxidantes/metabolismo , Ecossistema , Meio Ambiente , Genótipo , Maryland , Estações do Ano , Triticum/química , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA