Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 237: 113869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522285

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are serious lung injuries caused by various factors, leading to increased permeability of the alveolar-capillary barrier, reduced stability of the alveoli, inflammatory response, and hypoxemia. Despite several decades of research since ARDS was first formally described in 1967, reliable clinical treatment options are still lacking. Currently, supportive therapy and mechanical ventilation are prioritized, and there is no medication that can be completely effective in clinical treatment. In recent years, nanomedicine has developed rapidly and has exciting preclinical treatment capabilities. Using a drug delivery system based on nanobiotechnology, local drugs can be continuously released in lung tissue at therapeutic levels, reducing the frequency of administration and improving patient compliance. Furthermore, this novel drug delivery system can target specific sites and reduce systemic side effects. Currently, many nanomedicine treatment options for ARDS have demonstrated efficacy. This review briefly introduces the pathophysiology of ARDS, discusses various research progress on using nanomedicine to treat ARDS, and anticipates future developments in related fields.


Assuntos
Nanomedicina , Síndrome do Desconforto Respiratório , Humanos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Pulmão , Sistemas de Liberação de Medicamentos
2.
J Cell Biochem ; 125(2): e30504, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37992225

RESUMO

This study aimed to investigate the effect and mechanism of 2α, 3α, 24-thrihydroxyurs-12-en-24-ursolic acid (TEOA) alone or in combination with cisplatin on oral cancer. TEOA, a pentacyclic triterpenoid compound isolated from the roots of Actinidia eriantha, has demonstrated antitumor activity in preclinical experiments. However, its role in oral cancer remains poorly understood. Our findings revealed that a low concentration of TEOA did not exhibit significant cytotoxicity against oral squamous cell carcinoma cells. However, when combined with cisplatin, TEOA showed a significant therapeutic effect. The combined treatments resulted in a significant inhibition of proliferation and migration and a significant increase in apoptosis of squamous cell carcinoma cells. Cisplatin exposure increased autophagy levels, which may contribute to chemoresistance. Of note, the presence of TEOA significantly inhibited cisplatin-induced autophagy, leading to improved chemotherapy efficacy. Our findings indicate that a mild low dosage of TEOA may enhance the cytotoxic effect of cisplatin by downregulating autophagy in oral cancer cells.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Ácido Ursólico , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia , Apoptose , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células
3.
Asian J Pharm Sci ; 18(2): 100782, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36845839

RESUMO

Psoriasis is a chronic inflammatory skin disease characterized by erythema, scaling, and skin thickening. Topical drug application is recommended as the first-line treatment. Many formulation strategies have been developed and explored for enhanced topical psoriasis treatment. However, these preparations usually have low viscosity and limited retention on the skin surface, resulting in low drug delivery efficiency and poor patient satisfaction. In this study, we developed the first water-responsive gel (WRG), which has a distinct water-triggered liquid-to-gel phase transition property. Specifically, WRG was kept in a solution state in the absence of water, and the addition of water induced an immediate phase transition and resulted in a high viscosity gel. Curcumin was used as a model drug to investigate the potential of WRG in topical drug delivery against psoriasis. In vitro and in vivo data showed that WRG formulation could not only extend skin retention but also facilitate the drug permeating across the skin. In a mouse model of psoriasis, curcumin loaded WRG (CUR-WRG) effectively ameliorated the symptoms of psoriasis and exerted a potent anti-psoriasis effect by extending drug retention and facilitating drug penetration. Further mechanism study demonstrated that the anti-hyperplasia, anti-inflammation, anti-angiogenesis, anti-oxidation, and immunomodulation properties of curcumin were amplified by enhanced topical drug delivery efficiency. Notably, neglectable local or systemic toxicity was observed for CUR-WRG application. This study suggests that WRG is a promising formulation for topically psoriasis treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA