Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1298471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633263

RESUMO

Introduction: In light of the public health burden of the COVID-19 pandemic, boosting the safety and immunogenicity of COVID-19 vaccines is of great concern. Numerous Traditional Chinese medicine (TCM) preparations have shown to beneficially modulate immunity. Based on pilot experiments in mice that showed that supplementation with Huoxiang Suling Shuanghua Decoction (HSSD) significantly enhances serum anti-RBD IgG titers after inoculation with recombinant SARS-CoV-2 S-RBD protein, we conducted this randomized, double-blind, placebo-controlled clinical trial aimed to evaluate the potential immunogenicity boosting effect of oral HSSD after a third homologous immunization with Sinovac's CoronaVac SARS-CoV-2 (CVS) inactivated vaccine. Methods: A total of 70 participants were randomly assigned (1:1 ratio) to receive a third dose of CVS vaccination and either oral placebo or oral HSSD for 7 days. Safety aspects were assessed by recording local and systemic adverse events, and by blood and urine biochemistry and liver and kidney function tests. Main outcomes evaluated included serum anti-RBD IgG titer, T lymphocyte subsets, serum IgG and IgM levels, complement components (C3 and C4), and serum cytokines (IL-6 and IFN-γ). In addition, metabolomics technology was used to analyze differential metabolite expression after supplementation with HSSD. Results: Following a third CVS vaccination, significantly increased serum anti-RBD IgG titer, reduced serum IL-6 levels, increased serum IgG, IgM, and C3 and C4 levels, and improved cellular immunity, evidenced by reduce balance deviations in the distribution of lymphocyte subsets, was observed in the HSSD group compared with the placebo group. No serious adverse events were recorded in either group. Serum metabolomics results suggested that the mechanisms by which HSSD boosted the immunogenicity of the CVS vaccine are related to differential regulation of purine metabolism, vitamin B6 metabolism, folate biosynthesis, arginine and proline metabolism, and steroid hormone biosynthesis. Conclusion: Oral HSSD boosts the immunogenicity of the CVS vaccine in young and adult individuals. This trial provides clinical reference for evaluation of TCM immunomodulators to improve the immune response to COVID-19 vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Medicamentos de Ervas Chinesas , Vacinas de Produtos Inativados , Adulto , Humanos , Animais , Camundongos , Interleucina-6 , Pandemias , SARS-CoV-2 , Imunoglobulina G , Imunoglobulina M
2.
Natl Sci Rev ; 11(4): nwae028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425424

RESUMO

Mitochondriopathy inspired adenosine triphosphate (ATP) depletions have been recognized as a powerful way for controlling tumor growth. Nevertheless, selective sequestration or exhaustion of ATP under complex biological environments remains a prodigious challenge. Harnessing the advantages of in vivo self-assembled nanomaterials, we designed an Intracellular ATP Sequestration (IAS) system to specifically construct nanofibrous nanostructures on the surface of tumor nuclei with exposed ATP binding sites, leading to highly efficient suppression of bladder cancer by induction of mitochondriopathy-like damages. Briefly, the reported transformable nucleopeptide (NLS-FF-T) self-assembled into nuclear-targeted nanoparticles with ATP binding sites encapsulated inside under aqueous conditions. By interaction with KPNA2, the NLS-FF-T transformed into a nanofibrous-based ATP trapper on the surface of tumor nuclei, which prevented the production of intracellular energy. As a result, multiple bladder tumor cell lines (T24, EJ and RT-112) revealed that the half-maximal inhibitory concentration (IC50) of NLS-FF-T was reduced by approximately 4-fold when compared to NLS-T. Following intravenous administration, NLS-FF-T was found to be dose-dependently accumulated at the tumor site of T24 xenograft mice. More significantly, this IAS system exhibited an extremely antitumor efficacy according to the deterioration of T24 tumors and simultaneously prolonged the overall survival of T24 orthotopic xenograft mice. Together, our findings clearly demonstrated the therapeutic advantages of intracellular ATP sequestration-induced mitochondriopathy-like damages, which provides a potential treatment strategy for malignancies.

3.
Appl Ergon ; 117: 104247, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38335864

RESUMO

To investigate the impact of environmental noise on the cognitive abilities of drivers, this study, using in-vehicle voice interaction as an example, conducted laboratory experiments to assess the effects of road traffic noise, entertainment noise, and white noise stimuli on drivers' attention and short-term memory. The noise levels simulated to mimic acoustic conditions during car driving ranged from 35 dB(A) to 65 dB(A). The conclusions drawn were as follows: (1) Noise levels directly influenced subjective annoyance levels, with annoyance linearly increasing as noise levels escalated; (2) Both attention and short-term memory task reaction times of drivers were significantly influenced by noise types. Compared to traffic noise and white noise, drivers' cognitive efficiency was lower under entertainment noise. (3) Performance in complex cognitive tasks was more susceptible to noise levels compared to simple cognitive tasks; (4) Experimentally, it was found that drivers exhibited the highest cognitive efficiency in cognitive tasks when the environmental noise level was 55 dB(A), as opposed to noise levels of 35 dB(A), 45 dB(A), and 65 dB(A).


Assuntos
Condução de Veículo , Humanos , Condução de Veículo/psicologia , Cognição , Atenção , Ruído/efeitos adversos , Tempo de Reação , Acidentes de Trânsito
4.
Artigo em Inglês | MEDLINE | ID: mdl-38197032

RESUMO

Purpose: The typical characteristic of COPD is airway remodeling, affected by environmental and genetic factors. However, genetic studies on COPD have been limited. Currently, the Abhd2 gene is found to play a critical role in maintaining alveolar architecture and stability. The research aims to investigate the predictive value of Abhd2 for airway remodeling in COPD and its effect on TGF-ß regulation. Methods: In humans, Abhd2 protein was obtained from peripheral blood monocytes. Peripheral blood TGF-ß, pulmonary surfactant proteins (SPs), metalloproteinases, inflammatory indicators (WBC, NEU, NLR, EOS, CRP, PCT, D-Dimer), chest CT (airway diameter and airway wall thickness), pulmonary function, and blood gas analysis were used to assess airway remodeling. In animals, Abhd2 deficient mice (Abhd2Gt/Gt) using gene trapping and C57BL6 mice were injected intraperitoneally with CSE to construct COPD models. HE staining, Masson staining and immunohistochemistry were used to observe the pathological changes of airway in mice, and RT-PCR, WB, ELISA and immunofluorescence were used to detect the expression of secreted proteins and EMT markers. Results: COPD patients with worse pulmonary function and higher airway remodeling-related inflammatory factors had lower Abhd2 protein expression. Moreover, indicators followed the same trend for COPD patients grouped by prognosis (Group A vs Group B). Serum TGF-ß was negatively correlated with Abhd2 protein expression, FEV1/FVC, FEV1, and FEV1% PRED. In mice, Abhd2 depletion promoted deposition of TGF-ß, leading to more pronounced emphysema, airway thickening, increased alveolar macrophage infiltration, decreased AECII number and SPs, and EMT phenomenon. Conclusion: Downregulation of Abhd2 can promote airway remodeling in COPD by modulating repair after injury and EMT via TGF-ß. This study suggests that Abhd2 may serve as a biomarker for assessing airway remodeling and guiding prognosis in COPD.


Assuntos
Remodelação das Vias Aéreas , Hidrolases , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Gasometria , Regulação para Baixo , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Hidrolases/genética
5.
Nat Commun ; 15(1): 454, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212623

RESUMO

Emerging evidence indicates that the activation of ferroptosis by glutathione peroxidase 4 (GPX4) inhibitors may be a prominent therapeutic strategy for tumor suppression. However, the wide application of GPX4 inhibitors in tumor therapy is hampered due to poor tumor delivery efficacy and the nonspecific activation of ferroptosis. Taking advantage of in vivo self-assembly, we develop a peptide-ferriporphyrin conjugate with tumor microenvironment specific activation to improve tumor penetration, endocytosis and GPX4 inhibition, ultimately enhancing its anticancer activity via ferroptosis. Briefly, a GPX4 inhibitory peptide is conjugated with an assembled peptide linker decorated with a pH-sensitive moiety and ferriporphyrin to produce the peptide-ferriporphyrin conjugate (Gi-F-CAA). Under the acidic microenvironment of the tumor, the Gi-F-CAA self-assembles into large nanoparticles (Gi-F) due to enhanced hydrophobic interaction after hydrolysis of CAA, improving tumor endocytosis efficiency. Importantly, Gi-F exhibits substantial inhibition of GPX4 activity by assembly enhanced binding (AEB) effect, augmenting the oxidative stress of ferriporphyrin-based Fenton reaction, ultimately enabling antitumor properties in multiple tumor models. Our findings suggest that this peptide-ferriporphyrin conjugate design with AEB effect can improve the therapeutic effect via induction of ferroptosis, providing an alternative strategy for overcoming chemoresistance.


Assuntos
Ferroptose , Neoplasias , Humanos , Endocitose , Hemina , Hidrólise , Peptídeos/farmacologia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
6.
IET Syst Biol ; 17(6): 336-351, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37814484

RESUMO

The coronavirus disease 2019 (COVID-19) has developed into a global health crisis. Pulmonary fibrosis, as one of the complications of SARS-CoV-2 infection, deserves attention. As COVID-19 is a new clinical entity that is constantly evolving, and many aspects of disease are remain unknown. The datasets of COVID-19 and idiopathic pulmonary fibrosis were obtained from the Gene Expression Omnibus. The hub genes were screened out using the Random Forest (RF) algorithm depending on the severity of patients with COVID-19. A risk prediction model was developed to assess the prognosis of patients infected with SARS-CoV-2, which was evaluated by another dataset. Six genes (named NELL2, GPR183, S100A8, ALPL, CD177, and IL1R2) may be associated with the development of PF in patients with severe SARS-CoV-2 infection. S100A8 is thought to be an important target gene that is closely associated with COVID-19 and pulmonary fibrosis. Construction of a neural network model was successfully predicted the prognosis of patients with COVID-19. With the increasing availability of COVID-19 datasets, bioinformatic methods can provide possible predictive targets for the diagnosis, treatment, and prognosis of the disease and show intervention directions for the development of clinical drugs and vaccines.


Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Humanos , COVID-19/diagnóstico , COVID-19/genética , SARS-CoV-2/genética , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/genética , Biologia Computacional , Redes Neurais de Computação
7.
J Control Release ; 353: 186-195, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403684

RESUMO

The drug efflux by P-glycoprotein (P-gp) is the primary contributor of multidrug resistance (MDR), which eventually generates insufficient nuclear drug accumulation and chemotherapy failure. In this paper, reversible covalent nanoassemblies on the basis of catechol-functionalized methoxy poly (ethylene glycol) (mPEG-dop) and phenylboronic acid-modified cholesterol (Chol-PBA) are successfully synthesized for delivery of both doxorubicin (DOX, anti-cancer drug) and tariquidar (TQR, P-glycoprotein inhibitor), which shows efficient nuclear DOX accumulation for overcoming tumor MDR. Through naturally forming phenylboronate linkage in physiological circumstances, Chol-PBA is able to bond with mPEG-dop. The resulting conjugates (PC) could self-assemble into reversible covalent nanoassemblies by dialysis method, and transmission electron microscopy analysis reveals the PC distributes in nano-scaled spherical particles before and after drug encapsulation. Under the assistance of Chol, PC can enter into lysosome of tumor cells via low-density lipoprotein (LDL) receptor-mediated endocytosis. Then the loaded TQR and DOX are released in acidic lysosomal compartments, which inhibit P-gp mediated efflux and elevate nuclear accumulation of DOX, respectively. At last, this drug loaded PC nanoassemblies show significant tumor suppression efficacy in multidrug-resistant tumor models, which suggests great potential for addressing MDR in cancer therapy.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos , Doxorrubicina , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias/tratamento farmacológico , Portadores de Fármacos/química , Subfamília B de Transportador de Cassetes de Ligação de ATP , Linhagem Celular Tumoral , Células MCF-7
8.
Clin Cosmet Investig Dermatol ; 15: 2211-2219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36281268

RESUMO

Background: The tests of sex hormones play pivotal roles in the clinical diagnosis and treatment of acne vulgaris, but the majority of patients with acne vulgaris present regular sex hormone levels within the normal reference range. Objective: To determine the correlation among levels of sex hormones, ratio of androgen to estrogen and acne grades in patients with acne vulgaris. Methods: A cross-sectional study was applied to collect 693 patients with acne vulgaris. All samples were screened by cluster sampling among those who underwent tests of sex hormones at Beijing Jingcheng Skin Hospital from July 2021 to June 2022. A gender stratified analysis was performed to classify acne grades I-IV. Spearman correlation analysis was used to analyze the relationship between age, sex hormones, ratio of androgen to estrogen and acne grades, with multinomial logistic regression to analyze the association of sex hormones with acne grades in patients with acne. Results: (1) The testosterone levels were mostly within normal reference values for both males and females with varying degrees of acne. For females, the serum follicle-stimulating hormone, estradiol, progesterone, testosterone, and ratio of androgen to estrogen were significantly different between acne grades. For males, there were significant differences in serum estradiol, testosterone, and ratio of androgen to estrogen across acne grades. (2) The acne grade was negatively correlated with estradiol and positively correlated with the ratio of androgen to estrogen; the female acne grade was also negatively correlated with age and progesterone, but positively correlated with follicle-stimulating hormone. (3) Multivariate logistic regression analysis indicated that the ratio of androgen to estrogen was independently correlated with the grade of acne and that acne grade worsened as the ratio increased. Conclusion: The increase in the ratio of androgen to estrogen may aggravate the acne grade in patients with acne vulgaris.

9.
Colloids Surf B Biointerfaces ; 217: 112655, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35785715

RESUMO

Treatment of late-stage lung cancer has witnessed limited advances. In contrast to the tremendous efforts toward improving adaptive immunity, approaches to modulating innate immunity are relatively immature. As important innate immune cells, tumor-associated macrophages (TAMs) account for a substantial fraction of tumor-infiltrating lymphocytes, which not only reverses the immune-suppressive tumor microenvironment but also facilitates an adaptive immune response. In this study, we developed a tumor-specific MMP-2-responsive CD47 blockage (TMCB) strategy to enable effective cancer immunotherapy. Briefly, the matrix metalloproteinase-2 (MMP-2)-responsive self-assembly peptide specifically recognizes CD47, which is highly expressed in lung tumor cells. Second, the MMP-2-responsive self-assembly peptide is efficiently cleaved by MMP-2, which is overexpressed in the tumor microenvironment. Finally, the generated residual peptide naturally self-assembles into peptide-based nanofibers. The in situ constructed nanofibers inhibit the canonical CD47 "Do not eat me" signal expressed on tumor cells to promote phagocytosis of tumor cells by macrophages, which further induces effective antigen presentation and initiates T cell-mediated adaptive immune responses to inhibit tumor growth. Thus, we described a peptide-based TMCB strategy that induces both innate and adaptive immune systems to inhibit tumor growth.


Assuntos
Antígeno CD47 , Neoplasias , Humanos , Imunoterapia , Metaloproteinase 2 da Matriz , Neoplasias/patologia , Neoplasias/terapia , Peptídeos , Fagocitose , Microambiente Tumoral
10.
Int J Chron Obstruct Pulmon Dis ; 17: 1537-1552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811742

RESUMO

Purpose: Pulmonary surfactant proteins A (SP-A) and D (SP-D) are lectins, involved in host defense and regulation of pulmonary inflammatory response. However, studies on the assessment of COPD progress are limited. Patients and Methods: Pulmonary surfactant proteins were obtained from the COPD mouse model induced by cigarette and lipopolysaccharide, and the specimens of peripheral blood and bronchoalveolar lavage (BALF) in COPD populations. H&E staining and RT-PCR were performed to demonstrate the successfully established of the mouse model. The expression of SP-A and SP-D in mice was detected by Western Blot and immunohistochemistry, while the proteins in human samples were measured by ELISA. Pulmonary function test, inflammatory factors (CRP, WBC, NLR, PCT, EOS, PLT), dyspnea index score (mMRC and CAT), length of hospital stay, incidence of complications and ventilator use were collected to assess airway remodeling and progression of COPD. Results: COPD model mice with emphysema and airway wall thickening were more prone to have decreased SP-A, SP-D and increased TNF-α, TGF-ß, and NF-kb in lung tissue. In humans, SP-A and SP-D decreased in BALF, but increased in serum. The serum SP-A and SP-D were negatively correlated with FVC, FEV1, FEV1/FVC, and positively correlated with CRP, WBC, NLR, mMRC and CAT scores (P < 0.05, respectively). The lower the SP-A and SP-D in BALF, the worse the lung function and the increased probability of complications and ventilator use. Moreover, the same trend emerged in COPD patients grouped according to GOLD severity grade (Gold 1-2 group vs Gold 3-4 group). The worse the patient's condition, the more pronounced the change. Conclusion: This study suggests that SP-A and SP-D may be related to the progression and prognostic evaluation of COPD in terms of airway remodeling, inflammatory response and clinical symptoms, and emphasizes the necessity of future studies of surfactant protein markers in COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Surfactantes Pulmonares , Remodelação das Vias Aéreas , Animais , Biomarcadores , Camundongos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Proteína A Associada a Surfactante Pulmonar/uso terapêutico , Proteína D Associada a Surfactante Pulmonar/análise , Proteína D Associada a Surfactante Pulmonar/uso terapêutico , Surfactantes Pulmonares/uso terapêutico
11.
Nano Lett ; 22(10): 3983-3992, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35548949

RESUMO

Lysosome-targeting self-assembling prodrugs had emerged as an attractive approach to overcome the acquisition of resistance to chemotherapeutics by inhibiting lysosomal sequestration. Taking advantage of lysosomal acidification induced intracellular hydrolytic condensation, we developed a lysosomal-targeting self-condensation prodrug-nanoplatform (LTSPN) system for overcoming lysosome-mediated drug resistance. Briefly, the designed hydroxycamptothecine (HCPT)-silane conjugates self-assembled into silane-based nanoparticles, which were taken up into lysosomes by tumor cells. Subsequently, the integrity of the lysosomal membrane was destructed because of the acid-triggered release of alcohol, wherein the nanoparticles self-condensed into silicon particles outside the lysosome through intracellular hydrolytic condensation. Significantly, the LTSPN system reduced the half-maximal inhibitory concentration (IC50) of HCPT by approximately 4 times. Furthermore, the LTSPN system realized improved control of large established tumors and reduced regrowth of residual tumors in several drug-resistant tumor models. Our findings suggested that target destructing the integrity of the lysosomal membrane may improve the therapeutic effects of chemotherapeutics, providing a potent treatment strategy for malignancies.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Linhagem Celular Tumoral , Resistência a Medicamentos , Humanos , Lisossomos/patologia , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Silanos/farmacologia , Silanos/uso terapêutico
12.
Front Immunol ; 13: 740513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350787

RESUMO

Objective: This study aims to identify clinically relevant diagnostic biomarkers in chronic obstructive pulmonary disease (COPD) while exploring how immune cell infiltration contributes towards COPD pathogenesis. Methods: The GEO database provided two human COPD gene expression datasets (GSE38974 and GSE76925; n=134) along with the relevant controls (n=49) for differentially expressed gene (DEG) analyses. Candidate biomarkers were identified using the support vector machine recursive feature elimination (SVM-RFE) analysis and the LASSO regression model. The discriminatory ability was determined using the area under the receiver operating characteristic curve (AUC) values. These candidate biomarkers were characterized in the GSE106986 dataset (14 COPD patients and 5 controls) in terms of their respective diagnostic values and expression levels. The CIBERSORT program was used to estimate patterns of tissue infiltration of 22 types of immune cells. Furthermore, the in vivo and in vitro model of COPD was established using cigarette smoke extract (CSE) to validated the bioinformatics results. Results: 80 genes were identified via DEG analysis that were primarily involved in cellular amino acid and metabolic processes, regulation of telomerase activity and phagocytosis, antigen processing and MHC class I-mediated peptide antigen presentation, and other biological processes. LASSO and SVM-RFE were used to further characterize the candidate diagnostic markers for COPD, SLC27A3, and STAU1. SLC27A3 and STAU1 were found to be diagnostic markers of COPD in the metadata cohort (AUC=0.734, AUC=0.745). Their relevance in COPD were validated in the GSE106986 dataset (AUC=0.900 AUC=0.971). Subsequent analysis of immune cell infiltration discovered an association between SLC27A3 and STAU1 with resting NK cells, plasma cells, eosinophils, activated mast cells, memory B cells, CD8+, CD4+, and helper follicular T-cells. The expressions of SLC27A3 and STAU1 were upregulated in COPD models both in vivo and in vitro. Immune infiltration activation was observed in COPD models, accompanied by the enhanced expression of SLC27A3 and STAU1. Whereas, the knockdown of SLC27A3 or STAU1 attenuated the effect of CSE on BEAS-2B cells. Conclusion: STUA1 and SLC27A3 are valuable diagnostic biomarkers of COPD. COPD pathogenesis is heavily influenced by patterns of immune cell infiltration. This study provides a molecular biology insight into COPD occurrence and in exploring new therapeutic means useful in COPD.


Assuntos
Genes MHC Classe I , Doença Pulmonar Obstrutiva Crônica , Algoritmos , Biomarcadores , Proteínas do Citoesqueleto/genética , Humanos , Aprendizado de Máquina , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Proteínas de Ligação a RNA/genética
13.
Pharmazie ; 77(1): 14-20, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045920

RESUMO

T cell immunoglobulin and mucin domain-1 (TIM-1) is a transmembrane glycoprotein and has been reported as an molecular mechanism of allergic diseases. This study aimed to explore the effects of anti-TIM-1 monoclonal antibodies (anti-TIM1) on the development of allergic asthma. Female C57BL/6 mice were induced and challenged with ovalbumin (OVA) and received subsequent intranasal administration of anti-TIM1. The airway resistance of all mice was evaluated using a Buxco PFT system. Flow cytometry was used to detect the expression of TIM-1 in peripheral blood mononuclear cells. The level of cytokine production in the bronchial alveolar lavage fluid and serum was determined using ELISA. Mucous cells were observed using Alcian blue and periodic acid-Schiff staining. In addition, B-cell lymphoma gene 2(BCL2), T-box transcription factor (T-bet), GATA binding protein-3(GATA3), signal transducer and activator of transcription (STAT) 1, STAT6 were analyzed by western blot analysis. Their corresponding mRNA expression levels were determined by quantitative PCR. The mRNA expression level of Mucin 5AC in the lung tissues was also detected using quantitative RT-PCR. The results showed that the intranasal administration of anti-TIM1 ameliorated airway inflammation and hyperresponsiveness in an acute model of asthma. Following administration of anti-TIM1, both the mRNA and protein levels of T-bet were upregulated, while those of BCL2 and GATA3 were downregulated. Moreover, the phosphorylation levels of STAT1 and STAT6 were increased. Taken together, these findings demonstrated that intranasal administration of anti-TIM1 ameliorated allergic lung inflammation and remodeling in mouse models of asthma by repairing both the STAT1 and STAT6 pathways.


Assuntos
Asma , Leucócitos Mononucleares , Animais , Anti-Inflamatórios/farmacologia , Asma/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/patologia , Leucócitos Mononucleares/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/farmacologia , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/farmacologia
14.
Front Oncol ; 11: 705869, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277450

RESUMO

BACKGROUND: A detailed means of prognostic stratification in patients with non-small cell lung cancer (NSCLC) is urgently needed to support individualized treatment plans. Recently, microRNAs (miRNAs) have been used as biomarkers due to their previously reported prognostic roles in cancer. This study aimed to construct an immune-related miRNA signature that effectively predicts NSCLC patient prognosis. METHODS: The miRNAs and mRNA expression and mutation data of NSCLC was obtained from The Cancer Genome Atlas (TCGA). Immune-associated miRNAs were identified using immune scores calculated by the ESTIMATE algorithm. LASSO-penalized multivariate survival models were using for development of a tumor immune-related miRNA signature (TIM-Sig), which was evaluated in several public cohorts from the Gene Expression Omnibus (GEO) and the CellMiner database. The miRTarBase was used for constructing the miRNA-target interactions. RESULTS: The TIM-Sig, including 10 immune-related miRNAs, was constructed and successfully predicted overall survival (OS) in the validation cohorts. TIM-Sig score negatively correlated with CD8+ T cell infiltration, IFN-γ expression, CYT activity, and tumor mutation burden. The correlation between TIM-Sig score and genomic mutation and cancer chemotherapeutics was also evaluated. A miRNA-target network of 10 miRNAs in TIM-Sig was constructed. Further analysis revealed that these target genes showed prognostic value in both lung squamous cell carcinoma and adenocarcinoma. CONCLUSIONS: We concluded that the immune-related miRNAs demonstrated a potential value in clinical prognosis.

15.
J Thorac Dis ; 13(1): 232-243, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33569203

RESUMO

BACKGROUND: Blood eosinophil levels are a known marker for the effects of therapy in patients with chronic obstructive pulmonary disease (COPD). This study aimed to clarify the cutoff values for blood eosinophils (EOS) to predict exacerbation risk and prognosis of acute exacerbation COPD (AECOPD) and investigate their correlation using inflammatory indicators and clinical characteristics. METHODS: In this observational study of 174 patients with AECOPD, we assessed the relationship between EOS and COPD. According to the percentage of blood EOS, patients were grouped into two groups (Group 1: EOS <2%, n=98; Group 2: EOS ≥2%, n=76), and Group 2 was further divided into Group A (2%≤ EOS <4%) and Group B (EOS ≥4%) based on a cutoff value of 4%. Patients received standardized treatment after collection of peripheral blood specimen. Associations of EOS with laboratory indicators before any treatment in hospital and with clinical data were compared. RESULTS: Patients in Group 1 showed significantly severe inflammation, worse pulmonary function, longer length of stay (LOS) (P<0.001), higher mMRC score (P<0.05), higher CAT score (P<0.05), higher rates of mortality (P<0.05), and greater noninvasive mechanical ventilation usage (P<0.05) compared with Group 2. Intriguingly, the CRP, total mMRC and CAT scores of patients in Group A were significantly lower than those in Group B (P<0.001; P<0.01; P<0.05, respectively). Pearson correlation analysis showed that a low percentage blood eosinophil level was negatively associated with higher WBC count (r=-0.155, P<0.05), NLR (r=-0.227, P<0.01) and CRP (r=-0.308, P<0.01). CONCLUSIONS: Different cutoff values for percentage blood EOS might be useful biomarkers for predicting the severity of exacerbation and prognosis of inpatients with AECOPD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA