Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 475: 134910, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889465

RESUMO

Aspergillus niger (A. niger) spores can induce numerous health problems. Once the airflow-imposed drag force on an A. niger spore exceeds its binding force with the colony, the spore is detached. Turbulent flow may considerably increase the spore detachment. No method is currently available for prediction of the drag force on a spore and its detachment in turbulent flows. This investigation measured the turbulent velocities and detachment of A. niger colonies in a wind tunnel. Computational fluid dynamics (CFD) was employed to model an A. niger unit subjected to turbulent flow blowing. The top 1 % quantile instantaneous velocity of the turbulent flow was specified as the steady entry flow boundary condition for solving the peak velocity distribution and the peak drag forces onto spores. The predicted spore detachment ratios were compared with the measurement data for model validation. The results revealed that the spore detachment ratios with a turbulence intensity of 17 % to 20 % can be twice to triple the ratio with a turbulence intensity of approximately 1 %, when the average velocity for blowing remains the same. The proposed CFD model can accurately predict the detachment ratios of the A. niger spores. ENVIRONMENTAL IMPLICATION: Some people are sensitive to the Aspergillus niger (A. niger) spores, and excessive exposure can cause nasal congestion, skin tingling, coughing, and even asthma. Turbulent flow can considerably increase the spore detachment, due to the increased airflow-imposed drag force on the spores during turbulence. This investigation developed a numerical model to solve for the peak velocity distribution and the peak drag forces onto spores in turbulent flows to predict the spore detachment. With the numerical tool, the airborne fungal spore concentrations would be predictable, which paves a way for intelligent and precise control of fungal aerosol pollution.


Assuntos
Aspergillus niger , Esporos Fúngicos , Microbiologia do Ar , Modelos Teóricos , Hidrodinâmica , Movimentos do Ar
2.
Sci Total Environ ; 912: 168714, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38007138

RESUMO

Detachment of fungal spores from growing colonies results in human exposure. Thus far, the distribution of the binding forces of the spores in a fungal unit is unknown, so that precise prediction of the spores detachment is quite challenging. This investigation used centrifugal separation to measure the binding forces of the spores. Aspergillus niger (A. niger) colonies on a culture plate were placed in a centrifuge, the detached spores were counted, and this number was used to obtain the distribution of binding forces. Next, the air-blowing of an A. niger unit was modeled by computational fluid dynamics (CFD). A spore was judged to be detached if the air-imposed drag force was greater than the binding force. For model validation, the predicted spore detachment ratios were compared with the ratios measured in a wind tunnel test. The results revealed that the binding forces of the spores obeyed the log-normal distribution. The binding forces of the distal spores from colonies with a growth age of 66 h ranged from 0 nN to 4.0 nN and had a mean of 0.65 nN. The CFD modeling predicted the detachment ratios of the distal spores with good accuracy.


Assuntos
Aspergillus niger , Aspergillus , Humanos , Esporos Fúngicos
3.
Sci Rep ; 13(1): 381, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611088

RESUMO

Dining tables may present a risk to diners by transmitting bacteria and/or viruses. Currently, there is a lack of an environmental-friendly and convenient means to protect diners when they are sitting together. This investigation constructed far-UVC excimer lamps to disinfect dining-table surfaces. The lamps were mounted at different heights and orientations, and the irradiance on table surfaces was measured. The irradiation doses to obtain different inactivation efficiencies for Escherichia coli (E. coli) were provided. In addition, numerical modeling was conducted for irradiance and the resulting inactivation efficiency. The surface-to-surface (S2S) model was validated with the measured irradiance. The germicidal performance of far-UVC irradiation, the far-UVC doses to which diners were exposed, and the risk of exposure to the generated ozone were evaluated. The results revealed that an irradiation dose of 12.8 mJ/cm2 can disinfect 99.9% of E. coli on surfaces. By varying the lamp irradiance output, the number and positions of the lamps, the far-UVC irradiation can achieve a 3-log reduction for a dining duration of 5 min. Besides, the far-UVC lamp has a low damage risk to diners when achieving an effective inactivation rate. Moreover, there is virtually no ozone exposure risk in a mechanically ventilated dining hall.


Assuntos
Escherichia coli , Vírus , Escherichia coli/efeitos da radiação , Desinfecção/métodos , Bactérias/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA