RESUMO
Symmetry engineering is explicitly effective to manipulate and even create phases and orderings in strongly correlated materials. Flexural stress is universally practical to break the space-inversion or time-reversal symmetry. Here, by introducing strain gradient in a centrosymmetric antiferromagnet Sr_{2}IrO_{4}, the space-inversion symmetry is broken accompanying a nonequivalent O p-Ir d orbital hybridization along the z axis. Thus, an emergent polar phase and out-of-plane magnetic moment have been simultaneously observed in these asymmetric Sr_{2}IrO_{4} thin films, which both are absent in its ground state. Furthermore, upon the application of a magnetic field, such polarization can be controlled by modifying the occupied d orbitals through spin-orbit interaction, giving rise to a flexomagnetoelectric effect. This Letter provides a general strategy to artificially design multiple symmetries and ferroic orderings in strongly correlated systems.
RESUMO
BACKGROUND AIMS: Self-expandable metallic stents (SEMSs) have been recommended for patients with unresectable malignant biliary obstruction while radiation-emitting metallic stents (REMSs) loaded with 125I seeds have recently been approved to provide longer patency and overall survival in malignant biliary tract obstruction. This trial is to evaluate the efficacy and safety of REMS plus hepatic arterial infusion chemotherapy (REMS-HAIC) versus SEMS plus HAIC (SEMS-HAIC) for unresectable perihilar cholangiocarcinoma (pCCA). METHODS: This multicenter randomized controlled trial recruited patients with unresectable Bismuth type III or IV pCCA between March 2021 and January 2023. Patients were randomly assigned (1:1 ratio) to receive either REMS-HAIC or SEMS-HAIC using permuted block randomization, with a block size of six. The primary endpoint was overall survival (OS). The secondary endpoints were time to symptomatic progression (TTSP), stent patency, relief of jaundice, quality of life, and safety. RESULTS: A total of 126 patients were included in the intent-to-treat population, with 63 in each group. The median OS was 10.2 months versus 6.7 months (P=0.002). The median TTSP was 8.6 months versus 5.4 months (P=0.003). The median stent patency was longer in the REMS-HAIC group than in the SEMS-HAIC group (P=0.001). The REMS-HAIC group showed better improvement in physical functioning scale (P<0.05) and fatigue symptoms (P<0.05) when compared to the SEMS-HAIC group. No significant differences were observed in relief of jaundice (85.7% vs. 84.1%; P=0.803) or the incidence of grade 3 or 4 adverse events (9.8% vs. 11.9%; P=0.721). CONCLUSION: REMS plus HAIC showed better OS, TTSP, and stent patency compared with SEMS plus HAIC in patients with unresectable Bismuth type III or IV pCCA with an acceptable safety profile.
RESUMO
The impact of ions on water has long been a subject of great interest, as it is closely tied to the hydration structure, dynamics, and properties of electrolyte solutions. Over centuries of investigation, the influence of ions on water's structure remains highly debated. Prevailing techniques, such as neutron and X-ray scattering, primarily focus on the microscopic structure of salt solutions at very high concentrations, mostly above 1 mol/L. In this study, we measured the structure of aqueous potassium iodide (KI) and potassium chloride (KCl) solutions using MeV liquid electron scattering (MeV-LES) across a concentration range of 0.10 to 0.75 mol/L. The obtained results provide detailed insights into the variations in ion-oxygen and oxygen-oxygen correlations as a function of concentration. The observed structural differences between KI and KCl solutions are in line with the structure maker/breaker theory, which suggests that iodide ions exert a more pronounced effect than chloride ions on disrupting the water shell. This work demonstrates the potency of MeV-LES for investigating the atomic structure in liquids, augmenting the modern analytical toolbox.
RESUMO
BACKGROUND AND PURPOSE: It remains unclear whether the combination of endovascular treatment (EVT) with intravenous thrombolysis (IVT) results in a more favorable functional outcome than EVT alone in managing cases of acute ischemic stroke (AIS) caused by basilar artery occlusion (BAO). Thus, this study aimed to compare the outcomes of two approaches-direct EVT (DEVT) and bridging therapy (IVT plus EVT)-in acute BAO patients presenting within 4.5 hours of stroke onset. MATERIALS AND METHODS: This multicenter retrospective cohort study included 153 acute BAO patients presenting within 4.5 hours of stroke onset. Of these patients, 65 (42.5%) and 88 (57.5%) underwent DEVT and bridging therapy, respectively. The primary outcome was defined as good functional outcome (modified Rankin Scale, 0-3) at 90 days. Additionally, pre-operative clinical features, thrombectomy attempts, successful reperfusion rates, incidences of symptomatic intracranial hemorrhage (sICH), and mortality were compared between the two groups. RESULTS: At 90 days, the rate of good functional outcome was comparable between the DEVT (44.6%) and bridging-therapy (39.8%) groups (adjusted odds ratio [aOR], 1.12; 95% confidence interval [CI], 0.55-2.31; p = 0.753). The bridging-therapy group exhibited a lower percentage of patients requiring ≥ 3 attempts of stent retrieval (aOR, 0.39; 95% CI, 0.16-0.93; p = 0.034). Pre-operative clinical features, rate of successful reperfusion, sICH, and mortality were similar between the two groups. CONCLUSIONS: In patients with BAO-induced AIS, DEVT demonstrates a comparable functional outcome to bridging therapy within 4.5 hours of symptom onset, but IVT reduces the number of thrombectomy attempts. ABBREVIATIONS: AIS, acute ischemic stroke; LVO, large-vessel occlusion; EVT, endovascular treatment; IVT, intravenous thrombolysis; BAO, basilar artery occlusion; DEVT, direct endovascular treatment; sICH, symptomatic intracranial hemorrhage; RCT, randomized controlled trial; IRIS, Improving Reperfusion Strategies in Ischemic Stroke; TOAST, Trial of ORG 10172 in Acute Stroke Treatment; mTICI, modified thrombolysis in cerebral infarction; SD, standard deviation; IQR, interquartile range; ICAS, intracranial atherosclerotic stenosis.
RESUMO
CaO modified with acetic acid solution or sodium hydroxide (H-CaO/OH-CaO) was used to explore the relationship between the physical and chemical properties of CaO and the components of bio-oil during the pyrolysis of rice straw (RS) and model compounds via experiment and density functional theory(DFT) simulation. The results showed that the modification changed the properties of CaO, and thus the catalytic performance on production of bio-oil components. H-CaO with the larger number of strong basic sites (1.10 â¼ 2 times than commercial CaO) and the longer Ca-O bond length showed the better selectivity and performance on formation of ketones (the maximum relative content in bio-oil reached 43 %). The conversion pathway of cellulose/hemicellulose was changed by H-CaO, which promoted the formation of ketones. The easier combining of H-CaO with the pyrolysis primary products due to the longer Ca-O bond was the key to its better performance.
Assuntos
Biomassa , Compostos de Cálcio , Teoria da Densidade Funcional , Cetonas , Óxidos , Pirólise , Cetonas/química , Óxidos/química , Compostos de Cálcio/química , Catálise , Oryza/química , Biocombustíveis , Simulação por ComputadorRESUMO
The ubiquitination is crucial for controlling cellular homeostasis and protein modification, in which ubiquitin-conjugating enzyme (E2) acts as the central player in the ubiquitination system. Ubiquitin-conjugating enzymes, which have special domains that catalyse substrates, have sequence discrepancies and modulate various pathophysiological processes in different cells of multiple organisms. E2s take part in the mitosis of primordial germ cells, meiosis of spermatocytes and the formation of mature haploid spermatids to maintain normal male fertility. In this review, we summarize the various types of E2s and their functions during distinct stages of spermatogenesis.
Assuntos
Espermatogênese , Enzimas de Conjugação de Ubiquitina , Espermatogênese/fisiologia , Masculino , Humanos , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/fisiologia , Animais , Ubiquitinação/fisiologia , Meiose/fisiologiaRESUMO
Introduction: Both hook-wire (HW) and anchored needle (AN) techniques can be used for preoperative computed tomography (CT)-guided localization for pulmonary nodules (PNs). But the outcomes associated with these two materials remain unclear. Aim: To assess the relative safety and efficacy of preoperative CT-guided HW and AN localization for PNs. Material and methods: This was a retrospective analysis of data collected from two institutions. Consecutive patients with PNs between January 2020 and December 2021 who underwent preoperative CT-guided HW or AN localization followed by video-assisted thoracoscopic surgery (VATS) procedures were included in these analyses, which compared the safety and clinical efficiency of these two localization strategies. Results: In total, 98 patients (105 PNs) and 93 patients (107 PNs) underwent CT-guided HW and AN localization procedures, respectively. The HW and AN groups exhibited similar rates of successful PN localization (95.2% vs. 99.1%, p = 0.117), but the dislodgement rate in the HW group was significantly higher than that for the AN group (4.8% vs. 0.0%, p = 0.029). The mean pain score of patients in the HW group was significantly higher than that for the AN group (p = 0.001). HW and AN localization strategies were associated with comparable pneumothorax (21.4% vs. 16.1%, p = 0.349) and pulmonary hemorrhage (29.6% vs. 23.7%, p = 0.354) rates. All patients other than 1 individual in the HW group successfully underwent VATS-guided limited resection. Conclusions: These data suggest that AN represents a safe, well-tolerated, feasible preoperative localization strategy for PNs that may offer value as a replacement for HW localization.
RESUMO
Sorghum (Sorghum bicolor), the fifth most important cereal crop globally, serves as a staple food, animal feed, and a bioenergy source. Paclobutrazol-Resistance (PRE) genes play a pivotal role in the response to environmental stress, yet the understanding of their involvement in pest resistance remains limited. In the present study, a total of seven SbPRE genes were found within the sorghum BTx623 genome. Subsequently, their genomic location was studied, and they were distributed on four chromosomes. An analysis of cis-acting elements in SbPRE promoters revealed that various elements were associated with hormones and stress responses. Expression pattern analysis showed differentially tissue-specific expression profiles among SbPRE genes. The expression of some SbPRE genes can be induced by abiotic stress and aphid treatments. Furthermore, through phytohormones and transgenic analyses, we demonstrated that SbPRE4 improves sorghum resistance to aphids by accumulating jasmonic acids (JAs) in transgenic Arabidopsis, giving insights into the molecular and biological function of atypical basic helix-loop-helix (bHLH) transcription factors in sorghum pest resistance.
Assuntos
Afídeos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Sorghum , Estresse Fisiológico , Triazóis , Sorghum/genética , Sorghum/metabolismo , Afídeos/genética , Afídeos/fisiologia , Animais , Triazóis/farmacologia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Arabidopsis/genética , Regiões Promotoras Genéticas , Família Multigênica , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Filogenia , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Genoma de PlantaRESUMO
Magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) experiments and molecular dynamics (MD) simulations were employed to investigate Na2O-B2O3-SiO2 and MgO-Na2O-B2O3-SiO2 glass structures up to ≈0.3 nm. This encompassed the {Na[p]}, {Mg[p]}, and {B[3], B[4]} speciations and the {Si, B[p], M[p]}-BO and {Si, B[p], M[p]}-NBO interatomic distances to the bridging oxygen (BO) and nonbridging oxygen (NBO) species, where the superscript indicates the coordination number. The MD simulations revealed the dominance of Mg[5] coordinations, as mirrored in average Mg2+ coordination numbers in the 5.2-5.5 range, which are slightly lower than those of the larger Na+ cation but with a narrower coordination distribution stemming from the higher cation field strength (CFS) of the smaller divalent Mg2+ ion. We particularly aimed to elucidate such Na+/Mg2+ CFS effects, which primarily govern the short-range structure but also the borosilicate (BS) glass network order, where both MD simulations and heteronuclear double-resonance 11B/29Si NMR experiments revealed a reduction of B[4]-O-Si linkages relative to B[3]-O-Si upon Mg2+-for-Na+ substitution. These effects were quantified and discussed in relation to previous literature on BS glasses, encompassing the implications for simplified structural models and descriptions thereof.
RESUMO
N2O is a dominant atmosphere pollutant, causing ozone depletion and global warming. Currently, electrochemical reduction of N2O has gained increasing attention to remove N2O, but its product is worthless N2. Here, we propose a direct eight-electron (8e) pathway to electrochemically convert N2O into NH3. As a proof of concept, using density functional theory calculation, an Fe2 double-atom catalyst (DAC) anchored by N-doped porous graphene (Fe2@NG) was screened out to be the most active and selective catalyst for N2O electroreduction toward NH3 via the novel 8e pathway, which benefits from the unique bent N2O adsorption configuration. Guided by theoretical prediction, Fe2@NG DAC was fabricated experimentally, and it can achieve a high N2O-to-NH3 Faradaic efficiency of 77.8% with a large NH3 yield rate of 2.9 mg h-1 cm-2 at -0.6 V vs RHE in a neutral electrolyte. Our study offers a feasible strategy to synthesize NH3 from pollutant N2O with simultaneous N2O removal.
RESUMO
Monozygotic (MZ) twins cannot be distinguished using conventional forensic STR typing because they present identical STR genotypings. However, MZ twins do not always live in the same environment and often have different dietary and other lifestyle habits. Metabolic profiles are deyermined by individual characteristics and are also influenced by the environment in which they live. Therefore, they are potential markers capable of identifying MZ twins. Moreover, the production of proteins varies from organism to organism and is influenced by both the physiological state of the body and the external environment. Hence, we used metabolomics and proteomics to identify metabolites and proteins in peripheral blood to discriminate MZ twins. We identified 1749 known metabolites and 622 proteins in proteomic analysis. The metabolic profiles of four pairs of MZ twins revealed minor differences in intra-MZ twins and major differences in inter-MZ twins. Each pair of MZ twins exhibited distinct characteristics, and four metabolites-methyl picolinate, acesulfame, paraxanthine, and phenylbenzimidazole sulfonic acid-were observed in all four MZ twin pairs. These four differential exogenous metabolites conincidently show that the different external environments and life styles can be well distinguished by metabolites, considering that twins do not all have the same eating habits and living environments. Moreover, MZ twins showed different protein profiles in serum but not in whole blood. Thus, our results indicate that differential metabolites provide potential biomarkers for the personal identification of MZ twins in forensic medicine.
Assuntos
Metabolômica , Gêmeos Monozigóticos , Humanos , Masculino , Feminino , Adulto , Proteômica , Pessoa de Meia-Idade , Benzimidazóis/sangue , Proteínas Sanguíneas/análiseRESUMO
5-Methylcytosine (m5C) methylation is a significant post-transcriptional modification that play a crucial role in the development and progression of numerous cancers. Whereas the functions and molecular mechanisms underlying m5C methylation in gliomas remain unclear. This study dedicated to explore changes of m5C levels and the clinical significance of the m5C writer NSUN4 in gliomas. We found that high m5C levels were negatively related to prognosis of patients with glioma. Moreover, gain- and loss-of-function experiments revealed the role of NSUN4 in enhancing m5C modification of mRNA to promote the malignant progression of glioma. Mechanistically speaking, NSUN4-mediated m5C alterations regulated ALYREF binding to CDC42 mRNA, thereby impacting the mRNA stability of CDC42. We also demonstrated that CDC42 promoted glioma proliferation, migration, and invasion by activating the PI3K-AKT pathway. Additionally, rescue experiments proved that CDC42 overexpression weaken the inhibitory effect of NSUN4 knockdown on the malignant progression of gliomas in vitro and in vivo. Our findings elucidated that NSUN4-mediated high m5C levels promote ALYREF binding to CDC42 mRNA and regulate its stability, thereby driving the malignant progression of glioma. This provides theoretical support for targeted the treatment of gliomas.
Assuntos
5-Metilcitosina , Glioma , Metiltransferases , Estabilidade de RNA , Proteína cdc42 de Ligação ao GTP , Animais , Feminino , Humanos , Masculino , Camundongos , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Camundongos Nus , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismoRESUMO
Variations in functional traits serve as measures of plants' ability to adapt to environment. Exploring the patterns of functional traits of desert plants along elevational gradients is helpful to understand the responses and adaptation strategies of species to changing environments. However, it is unknown whether the relationship between functional traits and elevation is affected by differences in the species' elevational distributions (elevation preference and species' range). Importantly, most researches have concerned with differences in mean trait values and ignored intraspecific trait variation. Here, we measured functional traits of desert plants along a wide elevational gradient in the Tibetan Plateau and adjacent areas and explored functional trait patterns over elevation in species with different elevational distributions. We decomposed trait variation and further investigated characterizations of intraspecific variation. Ultimately, the main drivers of trait variation were identified using redundancy analysis. We found that species' elevational distributions significantly influenced the relationship of functional traits such as plant height, leaf dry matter content, leaf thickness, leaf nitrogen and carbon content with elevation. Species with a lower elevational preference showed greater trait variation than species with a higher elevational preference, suggesting that species that prefer high elevation are more conservative facing environmental changes. We provide evidence that interspecific trait variation in leaf thickness and leaf carbon content decreased with increasing species' range, indicating that increased variations in resistance traits within species make greater responsiveness to environmental changes, enabling species a wider range. Elevation, temperature and precipitation were the main drivers of trait variation in species with a low elevational preference, while the effect of precipitation on trait variation in species with a high elevational preference was not significant. This study sheds new insights on how plants with different elevational distributions regulate their ecological strategies to cope with changing environments.
Assuntos
Altitude , Clima Desértico , Tibet , Folhas de Planta/fisiologia , Folhas de Planta/anatomia & histologiaRESUMO
Schizophrenia, influenced by genetic and environmental factors, may involve epigenetic alterations, notably histone modifications, in its pathogenesis. This review summarizes various histone modifications including acetylation, methylation, phosphorylation, ubiquitination, serotonylation, lactylation, palmitoylation, and dopaminylation, and their implications in schizophrenia. Current research predominantly focuses on histone acetylation and methylation, though other modifications also play significant roles. These modifications are crucial in regulating transcription through chromatin remodeling, which is vital for understanding schizophrenia's development. For instance, histone acetylation enhances transcriptional efficiency by loosening chromatin, while increased histone methyltransferase activity on H3K9 and altered histone phosphorylation, which reduces DNA affinity and destabilizes chromatin structure, are significant markers of schizophrenia.
Assuntos
Histonas , Esquizofrenia , Esquizofrenia/metabolismo , Esquizofrenia/genética , Humanos , Histonas/metabolismo , Animais , Epigênese Genética , Processamento de Proteína Pós-Traducional , Acetilação , Metilação , Fosforilação , Montagem e Desmontagem da CromatinaRESUMO
The Three Gorges Reservoir Area (TGRA) is characterized by unique geological features that increase its susceptibility to landslides. These slopes are especially prone to destabilization when influenced by external triggers like rainfall. This research focuses on the Piansongshu landslide within the TGRA, aiming at unraveling the complex internal deformation mechanisms of landslides triggered by rainfall and providing critical insights for their prevention and mitigation. The study begins with on-site geological surveys to meticulously examine the macroscopic signs and mechanisms of deformation. It then utilizes the GeoStudio numerical simulation software to assess the landslide's stability, focusing on the changes in internal seepage fields and stability under various rainfall scenarios. Results indicate that continuous rainfall leads to the formation of a temporary saturation zone on the slope, which gradually deepens. In regions with more pronounced deformation, the infiltration line at the leading edge of accumulation notably protrudes towards the surface. Notably, the stability coefficient of the secondary shear surface of the landslide fluctuates more significantly than that of the primary sliding surface. Higher rainfall intensity and longer duration are positively correlated with a more pronounced decrease in stability coefficients. The impact on stability also varies across different rainfall patterns. As rainfall infiltrates over time, the slope's safety factor gradually decreases. This reduction continues even post-rainfall, indicating a delayed restoration period before stability returns to a safe level. These results yield valuable data for forecasting and mitigating landslides.
RESUMO
Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by Kelch-like ECH-associated protein 1 (Keap1) alkylation plays a central role in anti-inflammatory therapy. However, activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified. Deoxynyboquinone (DNQ) is a natural small molecule discovered from marine actinomycetes. The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1. DNQ exhibited significant anti-inflammatory properties both in vitro and in vivo. The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α, ß-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine. DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway. Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation. The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry. DNQ triggered the ubiquitination and subsequent degradation of Keap1 by alkylation of the cysteine residue 489 (Cys489) on Keap1-Kelch domain, ultimately enabling the activation of Nrf2. Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α, ß-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain, suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.
Assuntos
COVID-19 , Orthopoxvirus , SARS-CoV-2 , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Humanos , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Orthopoxvirus/imunologia , Orthopoxvirus/genética , Vacinas contra COVID-19/imunologia , Vacinas de mRNA , Infecções por Poxviridae/prevenção & controle , Infecções por Poxviridae/imunologia , Vacinas Sintéticas/imunologia , Animais , Vacinas Virais/imunologiaRESUMO
Persulfate oxidants are widely used in soil remediation and wastewater treatment but perform poorly in degrading polycyclic aromatic hydrocarbons (PAHs), especially heavy fractions in solids. Herein, we propose the utilization of a green peroxymonosulfate-ferrate-FeS (PFI) oxidant as a promising process aid for remediating soils contaminated with heavy petroleum components, including asphaltenes and resins. The PFI oxidant could degrade heavy petroleum fractions because of dual activation of the peroxymonosulfate and ferrate by FeS at ambient conditions. Nevertheless, when dealing with soil with high oil content (>10%), the degradation efficiency remains limited (<30%) regardless of the quantity of oxidants employed. Surface elemental analysis shows that a coating of secondary products (Fe(OH)3, Fe2O3) on the surface and in pores of the soil-pollutant matrix explains the failure of oxidation and inefficient use of oxidant. To address this issue, a strategy of pre-solvent extraction-oxidation hybrid process with sequent acidic washing is proposed, where dichloromethane serves as the solvent, and PFI acts as the oxidant. In this system over 90% of the oil could be recovered with an oxidation efficiency of 80% by alleviating the problem of iron oxide coating the matrix surface. The oxidant consumption is also reduced to 70 wt% of the sludge. The PFI oxidant is found to exhibit excellent universality in treating oily sludge with low petroleum content (<2%), reducing the petroleum content in the residue to less than 0.3 wt% (meeting the national standards). The degradation of low oil content sludge by the PFI oxidant followed pseudo first-order kinetics. These findings not only elucidate the failure of PFI oxidation for high oil content oily sludge and identify its potential engineering application range, but also offer a practical strategy for processing petroleum-contaminated soil with varying oil contents through wet oxidation.